
 1

CMPS 101
Algorithms and Abstract Data Types
Winter 2006

Programming Assignment 1
Due Wednesday January 18, 10:00 pm

The purpose of this assignment is threefold: to make sure everyone is up to speed with Java, to practice
modularity and ADTs, and to build an ADT implementation which will be used (with minor
modifications) in future programming assignments. You should therefore test your ADT carefully, even
though all of its features may not be used here.

You are to write a Java program which takes as input a positive integer n from the command line, creates
a deck of n cards, then repeatedly performs a perfect shuffle on this deck until the cards are again in their
original order. Each card is labeled with a number from 1 to n. A perfect shuffle is performed by
splitting the deck into a top part and a bottom part (if n is odd, the middle card goes into the top part) and
then (starting with the top part) repeatedly taking the bottom card from each part and placing them on top
of a new deck. Thus to perform a perfect shuffle on the deck 1 2 3 4 5 6 7 8 9 (9=n), we begin by
splitting it into a top part 1 2 3 4 5, and a bottom part 6 7 8 9. We start the new deck with 5 on the
bottom, then 9, then 4, and so on until the new deck is 1 6 2 7 3 8 4 9 5. (Note that if n is odd, then the
first card remains in its original location after the shuffle.) Repeatedly shuffling a deck of size 9 results
the following sequence of deck permutations:

#Shuf f l es Deck Or der
-
 0 1 2 3 4 5 6 7 8 9
 1 1 6 2 7 3 8 4 9 5
 2 1 8 6 4 2 9 7 5 3
 3 1 9 8 7 6 5 4 3 2
 4 1 5 9 4 8 3 7 2 6
 5 1 3 5 7 9 2 4 6 8
 6 1 2 3 4 5 6 7 8 9

Repeatedly shuffling a deck of size 14 results in:

#Shuf f l es Deck Or der
-
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
 1 8 1 9 2 10 3 11 4 12 5 13 6 14 7
 2 4 8 12 1 5 9 13 2 6 10 14 3 7 11
 3 2 4 6 8 10 12 14 1 3 5 7 9 11 13
 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14

The relationship between the deck size and the number of shuffles required to bring the deck back to it’s
original state is an interesting one. A deck of size 500 requires 166 shuffles, while one of size 508
requires 508 shuffles, and a deck of size 511 requires only 9 shuffles. Note that the above examples are
for illustration only and do not represent program output.

Although there are many ways to shuffle cards, the purpose of this assignment is to implement and use a
list of integers ADT. Your program will do the following:

 2

1. Read the number of cards n from the command line.
2. Initialize a list (i.e. a deck) containing the n cards in sorted order. This is the only time you

should need to use the value n.
3. Perform perfect shuffles (as described above) on this deck until the original sorted order is

achieved.
4. Print out the number of shuffles performed.

To perform a perfect shuffle you should split your deck into two other decks by alternately “dealing” from
the top and bottom of the original deck, and inserting the cards into the new decks, then combine these
two decks by alternately “dealing” off their bottoms.

Your List ADT will actually be a double ended queue with a current-position marker. Thus the set of
“mathematical structures” for this ADT consists of all finite sequences of integers, where one integer may
be distinguished as the current element. (Note it is also possible in this ADT that no element is current.)
The current element can be used by the client to traverse the lists. Your List module will support the
following operations:

/ / Const r uct or s
Li st () / / Cr eat es an empt y l i s t

/ / Access f unct i ons
bool ean i sEmpt y() / / Ret ur ns t r ue i f l i s t cont ai ns no el ement s.
bool ean at Fi r st () / / Ret ur ns t r ue i f cur r ent mar ker r ef er s t o f i r s t el ement .
bool ean at Last () / / Ret ur ns t r ue i f cur r ent mar ker r ef er s t o l ast el ement .
bool ean of f End() / / Ret ur ns t r ue i f no el ement i s cur r ent .
i nt get Fi r st () / / Ret ur ns f i r s t el ement i n l i s t . Pr e: ! i sEmpt y() .
i nt get Last () / / Ret ur ns l ast el ement i n l i s t . Pr e: ! i sEmpt y() .
i nt get Cur r ent () / / Ret ur ns cur r ent el ement i n l i s t . Pr e: ! i sEmpt y() , ! of f End() .
i nt get Lengt h() / / Ret ur ns l engt h of l i s t .
bool ean equal s(Li st L) / / Ret ur ns t r ue i f t hi s l i s t cont ai ns same el ement s
 / / as ar gument l i s t .

/ / Mani pul at i on Pr ocedur es
voi d moveFi r st () / / Makes f i r s t el ement cur r ent . Pr e: ! i sEmpt y() , Post : ! of f End() .
voi d moveLast () / / Makes l ast el ement cur r ent . Pr e: ! i sEmpt y() , Post : ! of f End() .
voi d moveNext () / / St eps t he cur r ent mar ker t owar d end of l i s t .
 / / Pr e: ! i sEmpt y() , ! of f End() .
voi d movePr ev() / / St eps t he cur r ent mar ker t owar d begi nni ng of l i s t .
 / / Pr e: ! i sEmpt y() , ! of f End() .
voi d i nser t Bef or eFi r st (i nt dat a) / / Adds new el ement t o begi nni ng of l i s t .
 / / Post : ! i sEmpt y() .
voi d i nser t Af t er Last (i nt dat a) / / Adds new el ement t o end of l i s t .
 / / Post : ! i sEmpt y() .
voi d i nser t Bef or eCur r ent (i nt dat a) / / I nser t s new el ement j ust bef or e cur r ent .
 / / Pr e: ! i sEmpt y() , ! of f End() .
voi d i nser t Af t er Cur r ent (i nt dat a) / / I nser t s new el ement j ust af t er cur r ent .
 / / Pr e: ! i sEmpt y() , ! of f End() .
voi d del et eFi r st () / / Del et es f i r s t el ement . Pr e: ! i sEmpt y() .
voi d del et eLast () / / Del et es l ast el ement . Pr e: ! i sEmpt y() .
voi d del et eCur r ent () / / Del et es cur r ent el ement .
 / / Pr e: ! i sEmpt y() , ! of f End() ; Post : of f End() .

/ / Ot her Oper at i ons
Li st copy() / / Ret ur ns a new Li st cont ai ni ng t he same el ement s as t hi s l i s t .
publ i c St r i ng t oSt r i ng() / / Over r i des Obj ect ' s t oSt r i ng met hod.
publ i c st at i c voi d mai n(St r i ng[] ar gs) / / Test dr i ver f or t he Li st c l ass.

 3

The above operations are required for full credit, although it is not expected that all will be used by the
client module in this project (i.e. the Shuffle class). The following operations are optional, and may come
in handy in some subsequent assignment:

Li st cat (Li st L) / / Ret ur ns a new l i s t whi ch i s t he concat enat i on of
 / / t hi s Li st and t he ar gument l i s t . Thi s l i s t and
 / / t he ar gument l i s t ar e unchanged.
voi d makeEmpt y() / / Set s t hi s Li st t o t he empt y st at e.

Your List class should contain a private Node class which encapsulates one List element. This private
class should contain fields for an int (the value stored at that node), a Node (the previous element in the
list), and another Node (the next element in the list). It should also define an appropriate constructor, as
well as a t oSt r i ng() method. The List class should contain private fields of type Node which refer to
the first, last, and current Nodes in the List.

Your program will be structured in two files: a client module called Shuffle.java, and a List ADT module
called List.java. Each file will contain one top level class, Shuffle and List respectively. Shuffle will
represent a deck of cards as a List variable, and use the above methods to perform shuffling operations.

The following Makefile creates an executable jar file called Shuffle. Place it in a directory containing
List.java and Shuffle.java, then type gmake to compile your program. You can now invoke your program
by typing Shuf f l e (rather than j ava Shuf f l e.) For instance doing Shuf f l e 17 should result in the
integer 8 being printed to standard out.

Makef i l e f or CMPS 101 pa1 Wi nt er 2006.

MAI NCLASS = Shuf f l e
JAVAC = j avac
JAVASRC = $(wi l dcar d * . j ava)
SOURCES = $(JAVASRC) makef i l e README
CLASSES = $(pat subst %. j ava, %. cl ass, $(JAVASRC))
JARCLASSES = $(pat subst %. cl ass, %* . cl ass, $(CLASSES))
JARFI LE = $(MAI NCLASS)

al l : $(JARFI LE)

$(JARFI LE) : $(CLASSES)
 echo Mai n- cl ass: $(MAI NCLASS) > Mani f est
 j ar cvf m $(JARFI LE) Mani f est $(JARCLASSES)
 chmod +x $(JARFI LE)
 r m Mani f est

%. cl ass: %. j ava
 $(JAVAC) $<

c l ean:
 r m * . c l ass $(JARFI LE)

Note that this Makefile will compile all .java files in your current working directory. Also be aware that
if you are using the bash shell and you type make (instead of gmake), this makefile may not work
properly. To be safe always use gmake.

 4

You must also submit a README file for this (and every) assignment describing the files created for the
assignment, their purposes and relationships, along with any special notes to myself and the grader. Each
file you turn in must begin with your name, user id, and assignment name. Thus you are to submit four
files in all: List.java, Shuffle.java, Makefile, and README.

Start early and ask questions if anything is unclear. It is helpful to write simple test programs to make
sure you understand each part of the problem. The main method in your List class is required because it
is much easier to debug your List ADT in isolation before you use it in the Shuffle class. You should first
design and build your List ADT, test it thoroughly, and only then start coding your Shuffle class.
Information on how to turn in your program will be posted on the webpage.

