CMPS 101
Algorithms and Abstract Data Types
Winter 2006

Programming Assignment 1
Due Wednesday January 18, 10:00 pm

The purpose of this assignment is threefold: to make sure everyone is up to speed with Java, to practice
modularity and ADTs, and to build an ADT implementation which will be used (with minor
modifications) in future programming assignments. Y ou should therefore test your ADT carefully, even
though al of its features may not be used here.

You are to write a Java program which takes as input a positive integer n from the command line, creates
adeck of n cards, then repeatedly performs a perfect shuffle on this deck until the cards are again in their
original order. Each card is labeled with a number from 1 to n. A perfect shuffle is performed by
splitting the deck into a top part and a bottom part (if n is odd, the middle card goes into the top part) and
then (starting with the top part) repeatedly taking the bottom card from each part and placing them on top
of anew deck. Thus to perform a perfect shuffleonthedeck 123456789 (n=9), we begin by
splitting it into atop part 1 2 3 4 5, and a bottom part 6 7 8 9. We start the new deck with 5 on the
bottom, then 9, then 4, and so on until the new deck is 162738495. (Notethat if nisodd, then the
first card remains in its original location after the shuffle.) Repeatedly shuffling a deck of size 9 results
the following sequence of deck permutations:

#Shuf fl es Deck Order

0 123456789 10 11 12 13 14
1 8192103114125 13 6 14 7
2 48121591326 10 14 3 7 11
3 24681012 1413579 11 13
4 123456789 10 11 12 13 14

The relationship between the deck size and the number of shuffles required to bring the deck back to it's
original state is an interesting one. A deck of size 500 requires 166 shuffles, while one of size 508
requires 508 shuffles, and a deck of size 511 requires only 9 shuffles. Note that the above examples are
for illustration only and do not represent program output.

Although there are many ways to shuffle cards, the purpose of this assignment is to implement and use a
list of integers ADT. Your program will do the following:

Lo

Read the number of cards n from the command line.

2. Initialize alist (i.e. a deck) containing the n cards in sorted order. This is the only time you
should need to use the value n.

3. Perform perfect shuffles (as described above) on this deck until the original sorted order is
achieved.

4. Print out the number of shuffles performed.

To perform a perfect shuffle you should split your deck into two other decks by aternately “dealing” from
the top and bottom of the origina deck, and inserting the cards into the new decks, then combine these
two decks by alternately “dealing” off their bottoms.

Your List ADT will actually be a double ended queue with a current-position marker. Thus the set of
“mathematical structures” for this ADT consists of al finite sequences of integers, where one integer may
be distinguished as the current element. (Note it is aso possible in this ADT that no element is current.)
The current element can be used by the client to traverse the lists. Your List module will support the
following operations:

/1 Constructors
List() // Creates an enpty list

/1 Access functions

bool ean i senpty() // Returns true if list contains no elenents.

bool ean atFirst() // Returns true if current marker refers to first el ement.
bool ean atlLast() // Returns true if current marker refers to | ast el enent.

bool ean of fEnd() // Returns true if no elenment is current.

int getFirst() // Returns first elenent in list. Pre: !isEnpty().

int getLast() // Returns last elenent in list. Pre: !isEnpty().

int getCurrent() // Returns current elenent in list. Pre: lisEnpty(), !offEnd().
int getLength() // Returns length of list.

bool ean equal s(List L) // Returns true if this list contains sane el enents

/1l as argunent |ist.

/1 Mani pul ati on Procedures

voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d
voi d

voi d
voi d

noveFirst() // Makes first elenment current. Pre: lisEnpty(), Post: !offEnd().
nmovelast () /1 NMakes |ast elenent current. Pre: !liskEnpty(), Post: !'offEnd().
moveNext () /1l Steps the current narker toward end of I|ist.
/1 Pre: lisEmpty(), !'offEnd().
novePrev() /1l Steps the current narker toward begi nning of |ist.
/1 Pre: lisEnpty(), !offEnd().
i nsertBeforeFirst(int data) // Adds new el enent to beginning of |ist.
/1l Post: lisEmpty().
i nsertAfterLast(int data) /1 Adds new el enent to end of |ist.
/1 Post: lisEnpty().
i nsertBeforeCurrent(int data) // Inserts new el ement just before current.
/1 Pre: lisEmpty(), !'offEnd().
insertAfterCurrent(int data) // Inserts new elenment just after current.
/1 Pre: lisEmpty(), !'offEnd().
deleteFirst() // Deletes first elenent. Pre: !isEnpty().
del et eLast () /1 Deletes last element. Pre: !lisEnmpty().
deleteCurrent() // Deletes current el enent.
/1 Pre: lisEnpty(), 'offEnd(); Post: offEnd().

/1 Cther Operations

Li st

copy() // Returns a new List containing the sanme elenments as this |ist.

public String toString() // Overrides Ohject's toString method.
public static void main(String[] args) // Test driver for the List class.

The above operations are required for full credit, although it is not expected that al will be used by the
client module in this project (i.e. the Shuffle class). The following operations are optional, and may come
in handy in some subsequent assignment:

List cat(List L) // Returns a newlist which is the concatenation of
/!l this List and the argunment list. This list and
/1 the argunent |ist are unchanged.

voi d nmakeEnpty() // Sets this List to the enpty state.

Your List class should contain a private Node class which encapsulates one List element. This private
class should contain fields for an int (the value stored at that node), a Node (the previous element in the
list), and another Node (the next element in the list). It should also define an appropriate constructor, as
well asat oSt ring() method. The List class should contain private fields of type Node which refer to
thefirst, last, and current Nodes in the List.

Y our program will be structured in two files: a client module called Shufflejava, and aList ADT module
called List.java. Each file will contain one top level class, Shuffle and List respectively. Shuffle will
represent adeck of cards asaList variable, and use the above methods to perform shuffling operations.

The following Makefile creates an executable jar file called Shuffle. Place it in a directory containing
List.javaand Shuffle.java, then type gmake to compile your program. Y ou can now invoke your program
by typing Shuf f | e (rather than j ava Shuffl e.) For instance doing Shuffl e 17 should result in the
integer 8 being printed to standard out.

Makefile for CMPS 101 pal Wnter 2006.

MAI NCLASS = Shuffle

JAVAC = javac

JAVASRC = $(wildcard *.java)

SOURCES = $(JAVASRC) nmkefil e READVE

CLASSES = $(patsubst % java, %class, $(JAVASRO))
JARCLASSES = $(patsubst %class, %.class, $(CLASSES))
JARFI LE = $(MAI NCLASS)

all: $(JARFI LE)

$(JARFI LE): $(CLASSES)
echo Main-cl ass: $(MAI NCLASS) > Mani f est
jar cvim $(JARFI LE) Manifest $(JARCLASSES)
chnod +x $(JARFI LE)
rm Mani f est

% class: %java
$(JAVAC) $<

cl ean:
rm*.class $(JARFI LE)

Note that this Makefile will compile all .javafilesin your current working directory. Also be aware that
if you are using the bash shell and you type nmake (instead of gmake), this makefile may not work
properly. To be safe always use gnake.

Y ou must also submit a README file for this (and every) assignment describing the files created for the
assignment, their purposes and relationships, along with any special notes to myself and the grader. Each
file you turn in must begin with your name, user id, and assignment name. Thus you are to submit four
filesinall: List.java, Shufflejava, Makefile, and README.

Start early and ask questions if anything is unclear. It is helpful to write simple test programs to make
sure you understand each part of the problem. The main method in your List class is required because it
ismuch easier to debug your List ADT inisolation before you useit in the Shuffle class. Y ou should first
design and build your List ADT, test it thoroughly, and only then start coding your Shuffle class.
Information on how to turn in your program will be posted on the webpage.

