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Induction Proofs 
 
Let )(nP  be a propositional function of an integer n, i.e. P is a function whose domain is (some subset of) 
the set of integers and whose codomain is the set { true, false} .  Informally this means )(nP  is an  
assertion whose truth or falsity depends on the integer n.  Mathematical Induction is a proof technique 
which can be used to prove statements of the form )(:0 nPnn ≥∀  (“ for all n greater than or equal to 0n , 

)(nP is true”).  Here 0n  is some fixed integer, and often 10 =n .  Such a proof consists of two steps: 

 
I. Base Step:  Prove directly that the proposition )( 0nP  is true. 

IIa. Induction Step:  Prove  ))1()((:0 +→≥∀ nPnPnn . 

To do this pick an arbitrary 0nn ≥ , and assume for this n that )(nP  is true.  Then show as a 

consequence that )1( +nP  is true.  The statement )(nP  is often called the induction hypothesis,  
since it is what is assumed in the induction step. 

 
When I and II are complete we conclude that )(nP  is true for all 0nn ≥ .  Induction is sometimes 

explained in terms of a domino analogy.  Consider an infinite set of dominos which are lined up and ready 
to fall.  Each domino is labeled by a positive integer, starting with 1 (i.e. 10 =n ).  Let )(nP  be the 

assertion: “ the nth domino falls” .  First prove )1(P , i.e. “ the first domino falls” , then prove 
))1()((: 1 +→≥∀ nPnPn  which says “ if any particular domino falls, then the next domino must also 

fall” .  When this is done we may conclude )(:1 nPn ≥∀ , “all dominos fall” .  There are a number of 
variations on the induction step.  The first is just a reparametrization of IIa. 
 
IIb. Induction Step:  Prove  ))()1((:0 nPnPnn →−>∀  

Let 0nn > , assume )1( −nP  is true, then prove )(nP  is true. 

 
Forms IIa and IIb are said to be based on the first principle of mathematical induction.  The validity of 
this principle is proved in the appendix of this handout.  Another important variation is called the second 
principle of mathematical induction, or strong induction. 
 
IIc. Induction Step:  Prove  ))1())( :((:0 +→≤∀≥∀ nPkPnknn  

Let 0nn ≥ , assume that for all k in the range nkn ≤≤0 , )(kP is true.  Then prove as a 

consequence that )1( +nP  is true.  In this case the term induction hypothesis refers to the stronger 
assumption: )( : kPnk ≤∀ .  

 
The strong induction form is often reparameterized as in IIb:  
 
IId. Induction Step:  Prove  ))())(:((:0 nPkPnknn →<∀>∀  

Let 0nn > , assume for all k in the range nkn <≤0 , that )(kP  is true, then prove as a 

consequence that )(nP  is true.  In this case the induction hypothesis is )( : kPnk <∀ . 



In terms of the Domino analogy, the strong induction form IId says we must show: (I) the first domino 
falls, and (II) for any n, if all dominos up to but not including the thn  domino fall, then the  thn  domino 
falls.  From (I) and (II) we may conclude that all dominos fall.  Strong Induction is most often 
parameterized as in IId, and form IIc is uncommon.  We present here a number of examples of IIa, IIb, 
and IId. 
 
Example 1    Prove that for all 1≥n : 
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Proof: 
Let )(nP  be the boxed equation above.  We begin the induction at 10 =n . 

I. Base step 

Clearly  
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i  , showing that )1(P  is true. 

IIa. Induction Step 
Let 1≥n  and assume )(nP  is true.  That is, for this particular value of n, the boxed equation 
holds.  Then 
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showing that )1( +nP  is true.   
 
We conclude that )(nP  is true for all 1≥n .                                                                                          /// 
 
One should always state explicitly what is being assumed in the induction step (i.e. what is the induction 
hypothesis.)  One should also make note of the point in the proof at which the induction hypothesis is 
used. 
 
Example 2    Let Rx ∈  and 1≠x .  Show that for all 0≥n : 
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Proof: 
Here we will use form IIb.  Again let )(nP  be the boxed equation.  We begin the induction at 00 =n . 

 
I. Base step 
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  , showing that )1(P  is true. 



IIb. Induction Step 

Let 0>n  and assume that )1( −nP  is true, i.e. assume for this particular n that:  
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showing that )(nP  is true. 
 
Steps I and II prove that )(nP  holds for all 0≥n .                                                                                   /// 
 

Exercise  Prove that for all 1≥n :  
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.  Do this using both forms IIa and IIb.    

 
Often the propositional function )(nP  is not a formula, but some assertion concerning other types of 
mathematical structures.  Recall that a graph G consists of a set V of vertices, and a set E of edges.  Each 
edge joins two (not necessarily distinct) vertices which we call it’s ends.  Two vertices that are joined by 
an edge are said to be adjacent, and an edge is said to be incident with it’s two ends.  A path in G is a 
sequence of adjacent vertices, all of which are distinct, except possibly the first and last.   A cycle in G is 
a closed path, i.e. one in which the initial and terminal vertices are identical.  A graph G is said to be 
connected if any two vertices are joined by a path.  G is called acyclic if it contains no cycles.  A graph T 
is called a tree if it is both connected and acyclic.  The following example uses the strong induction IId. 
 
Example 3    Let 1≥n  and suppose T  is a tree on n vertices.  Prove that T  necessarily has 1−n  edges. 
 
Proof: 
Let )(nP be the statement:   if T is a tree on n vertices, then T contains 1−n  edges.    We begin at 10 =n . 

 
I. Base step 

If T has just one vertex then, being acyclic, it can have no edges, whence )1(P  holds. 
IId. Induction Step (Strong Induction) 

Let 1>n  and assume for all k in the range nk <≤1 , that )(kP  is true.  That is, for any such k, all 
trees on k vertices contain 1−k  edges.  Now let T be a tree on n vertices.  Pick any edge e in T and 
remove it.  The removal of e splits T into two subtrees, each having fewer than n vertices.  Say the 
two subtrees have 1k  and 2k  vertices respectively.  Since no vertices were removed we must have 

nkk =+ 21 .  Then by our inductive hypothesis these two subtrees have 11 −k  and 12 −k  edges 
respectively.  Upon replacing the edge e we see that T must contain a total of 
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edges. 



The result now follows for all trees by the second principle of mathematical induction.                       /// 
 
There are many other variations on the induction technique.  Occasionally we must use double induction, 
which involves a modification of both the base and induction steps.   
 
Base Step:  Prove )( 0nP  and )1( 0 +nP . 

Induction Step:  Prove  ))()1()2((:)2( 0 nPnPnPnn →−∧−+≥∀ . 

 
When this is accomplished we may conclude )(:0 nPnn ≥∀ .  In terms of our domino analogy we prove 

that:  (I) the first two dominos fall, and (II) if any two consecutive dominos fall, then the very next 
domino falls.  From this we deduce that all dominos fall.  The next example uses the Fibonacci numbers 

nF  which are defined by the recurrence  
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i.e. each term is the sum of the previous two.  Using this recurrence, the first few terms of the sequence 
are readily computed as 3 ,2 ,1 ,1 ,0 43210 ===== FFFFF ,… etc. 

 

Example 4   Let 
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Proof:    
Let )(nP  denote the boxed equation above. 
 
I. Base Step 

Observe that )0(P  and )1(P  are true since [ ] 0
00 0
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II. Induction Step  (Double Induction) 
Let 2≥n  and assume that both )2( −nP  and )1( −nP  are true, i.e. we assume for this n 
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One checks that a and b are roots of the quadratic equation 012 =−− xx , whence 12 += aa , and 
12 += bb .  Therefore 

       [ ] [ ]nnnn
n babbaaF −=⋅−⋅= −−

5

1

5

1 2222 ,  

showing that )(nP  is true.   

Together (I) and (II) imply that [ ]nn
n baF −=
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 for all 0≥n .                                                       /// 



Often the proposition to be proved is an inequality, as the next example illustrates. 
 
Example 5   Define )(nT  for +∈ Zn  by the recurrence 
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Prove that for all 1≥n ,  )lg()( nnT ≤   (which implies )(lg)( nOnT = .) 
 
Proof: 
Let )(nP  be the boxed inequality above. 
I.         Base Step 

The inequality  )1lg()1( ≤T  reduces to simply 00 ≤ , which is obviously true, so )1(P  holds. 
 
IId.     Induction Step (Strong Induction) 

Let 1>n  and assume for all k in the range nk <≤1  that )(kP  is true, i.e. )lg()( kkT ≤ .  In 

particular � ( ) � 2/lg2/ nnT ≤  when � 2/nk = .  Therefore 

 

� ( ) 12/)( += nTnT                         (by the recurrence for )(nT ) 

         �  12/lg +≤ n                          (by the induction hypothesis) 

         1)2/lg( +≤ n                          (since �  xx ≤  for any x) 

         1)2lg()lg( +−≤ n  
         )lg(n= , 

showing that )(nP  is true. 
 
Therefore )lg()( nnT ≤  for all 1≥n  as claimed.                                                                                  /// 
 
Exercise   Define )(nS  for +∈ Zn  by the recurrence 
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Prove that for all 1≥n :  )lg()( nnS ≥   (whence )(lg)( nnS Ω= .) 
   
Induction Fallacies 
The next few examples illustrate some pitfalls in constructing induction proofs.  The result in Example A 
below was proved correctly in Example 3.  We give an invalid proof of the same fact which illustrates an 
argument some authors have called the “ induction trap” . 
 
Example A   For all 1≥n , if T is a tree on n vertices then T has 1−n  edges. 
 
Proof:  (Invalid) 
Base Step:  If 1=n  then T has no edges, being acyclic. 
Induction Step:  Let 1≥n  and let T be a tree on n vertices.  Assume that T has 1−n  edges.  Add a new 
vertex and join it to T with a new edge.  The resulting graph has 1+n  vertices and n edges (and is clearly 



a tree since connectedness is maintained and no cycles were created.)  By the principle of mathematical 
induction, all trees on n vertices have 1−n  edges.   
 
Let us first observe that this argument does not follow the induction paradigm.  In this example )(nP  is of 
the form )()( nBnA →  where )(nA  is the statement “T is a tree on n vertices” , and )(nB  is “T has 1−n  
edges” .  The induction step should therefore be to prove, for all 1≥n , )1()( +→ nPnP .  That is 
 

))1()1(())()(( +→+→→ nBnAnBnA . 
 
To prove this we should assume )()( nBnA → , then assume )1( +nA , then show as a consequence that 

)1( +nB is true.  In other words we should: 
 

• Assume all trees on n vertices have 1−n  edges 
• Assume T has 1+n  vertices 
• Show as a consequence that T has n edges 

 
The above argument did not follow this format however.  Instead the arguer does the following. 
 

• Assume T has n vertices 
• Assume T has 1−n  edges 
• Construct a new tree from T having 1+n  vertices and n edges 

 
Therefore the above argument was not a proof by induction.  Some students would nevertheless hold that 
the above argument is still valid, even though it is not a true induction proof.  The next example shows 
convincingly that it cannot be valid.  First we introduce a few more definitions related to graphs.  A graph 
G is called simple if it contains no loops (i.e. edges whose end vertices are identical) and no multiple 
edges (i.e. pairs of edges with the same end vertices). 
 
Example B   For all 1≥n , if G is a simple graph on n vertices, then G has 1−n  edges. (False!) 
 
We notice right away that the above statement is false since the graph below provides an elementary 
counter-example.  But consider the following “proof”  in light of Example A. 
 
 
 
 
 
Proof:  (Invalid) 
Base Step:  If 1=n  then G has no edges, being simple. 
Induction Step:  Let 1≥n  and let G be a simple graph on n vertices.  Assume that G has 1−n  edges.  
Add a new vertex and join it to G with a new edge.  The resulting graph has 1+n  vertices and n edges 
(and is clearly simple since no loops or multiple edges were created.)  By the principle of mathematical 
induction, all simple graphs on n vertices have 1−n  edges. 
 
Observe that Example B follows the format of Example A word for word.  Thus if A is valid, so must B 
be valid.  But the assertion “proved” in B is false!  Therefore B cannot be a valid argument, and so neither 
is A.  Another fallacy comes about by not proving the induction step for all 0nn ≥ . 



Example C   All horses are of the same color. 
 
Proof: (Invalid) 
We prove that for all 1≥n :  if S is a set of n horses, then all horses in S have the same color.   The result 
follows on letting S be the set of all horses.  Let )(nP  be the boxed statement, and proceed by induction 
on n. 
 
Base Step:  Let 1=n .  Obviously if S is a set consisting of just one horse, then all horses in S must have 
the same color.  Thus )1(P  is true. 
Induction Step:  Let 1>n  and assume that in any set of n horses, all horses are of the same color.  Let S 
be a set of 1+n  horses, say { }1321 ,,,, += nhhhhS � .  Then the sets 

 
}{},,,{ 1132 hShhhS n −==′ +�  

and 
}{},,,{ 2131 hShhhS n −==′′ +�  

 
each contain exactly n horses, and so by the induction hypothesis all horses in S ′  are of one color, and 
likewise for S ′′ .  Observe that SSh ′′∩′∈3  and that 3h  can have only one color.  Therefore the color of 

the horses in S ′  is identical to that of the horses in S ′′ .  (Note 31    2    1 ≥+�≥�> nnn , so there is in 
fact a third horse, and he can have only one color.)  Since SSS ′′∪′=  it follows that all horses in S are of 
the same color.  Thus )1( +nP  is true, showing that )1()( +→ nPnP  for all 1>n .  The result now 
follows by induction. 
 
Obviously the proposition being proved is false, so there is something wrong with the proof, but what?  
The base step is certainly correct, and the induction step, as stated, is also correct.  The problem is that the 
induction step was not quantified properly.  We should have proved )1()(:1 +→≥∀ nPnPn   Instead we 
proved (correctly) that )1()(:1 +→>∀ nPnPn .  Indeed it is true that )3()2( PP → , )4()3( PP → , and 

)5()4( PP → , etc.., but we never proved (and it is false that) )2()1( PP → .  In terms of the domino 
analogy, it is as if the first domino falls; and if any domino indexed 2 or above were to fall, then the next 
domino would fall; but the first domino is not sufficient to topple the second domino, and hence no 
domino other than the first actually falls. 
 
Appendix:  Proof of the first principle of mathematical induction (form IIb). 
We prove for any propositional function )(nP  defined on the positive integers +Z , that  
 

( )[ ] )(:1)()1(:1)1( nPnnPnPnP ≥∀→→−>∀∧  
 
is a tautology.  The proof is based on the well ordering property of the positive integers which says:  Any 
non-empty set of positive integers contains a least element.  We assume this property without proof. 
 
Proof: 
Assume that the statements )1(P  and )()1(:1 nPnPn →−>∀  are true.  Let }false is )(:{ nPZnS +∈= .  
It will be sufficient to show that ∅=S , for then )(nP  is true for all 1≥n .  Assume, to get a 
contradiction, that ∅≠S .  Then S contains a smallest element m by the well ordering property.  Since 

)1(P  is true, S∉1  and so 1≠m .  Therefore 1>m , and 11≥−m .  Since m is the smallest element in S, 



we have Sm ∉−1 , whence )1( −mP  is true.  By setting mn =  in the statement )()1(:1 nPnPn →−>∀  
we have )()1( mPmP →− , and since )1( −mP  is true, we conclude that )(mP  is also true .  Thus Sm ∉ , 
contradicting the very definition of m as the smallest element in S.  This contradiction shows that our 
assumption was false, and therefore ∅=S  as required.                                                                         /// 


