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I nduction Proofs

Let P(n) beapropositional function of an integer n, i.e. P is afunction whose domain is (some subset of)
the set of integers and whose codomain is the set {true, false}. Informally this means P(n) is an
assertion whose truth or falsity depends on the integer n. Mathematical Induction is a proof technique
which can be used to prove statements of the form Cn=n,: P(n) (“for all n greater than or equal to n,,

P(n)istrue’). Here n, is some fixed integer, and often n, =1. Such aproof consists of two steps:

l. Base Step: Prove directly that the proposition P(n,) istrue.
Ila.  Induction Step: Prove COn=n, :(P(n) - P(n+1)).
To do this pick an arbitrary n=n,, and assume for this n that P(n) is true. Then show as a

consequence that P(n+1) istrue. The statement P(n) is often called the induction hypothesis,
sinceit iswhat is assumed in the induction step.

When | and Il are complete we conclude that P(n) is true for all n=n,. Induction is sometimes

explained in terms of adomino analogy. Consider an infinite set of dominos which are lined up and ready
to fall. Each domino is labeled by a positive integer, starting with 1 (i.e. n, =1). Let P(n) be the
assertion: “the nth domino fals’. First prove P(1), i.e. “the first domino falls’, then prove
(On=1:(P(n) - P(n+1)) which says “if any particular domino falls, then the next domino must also
fall”. When this is done we may conclude [OIn>1:P(n), “al dominos fal”. There are a number of
variations on the induction step. Thefirst isjust areparametrization of |la

IIb.  Induction Step: Prove [On>n,:(P(n-1) - P(n))
Let n>n,, assume P(n-1) istrue, then prove P(n) istrue.

Forms lla and I1b are said to be based on the first principle of mathematical induction. The validity of
this principle is proved in the appendix of this handout. Another important variation is called the second
principle of mathematical induction, or strong induction.

Ilc.  Induction Step: Prove On=n, : ((Ck <n:P(k)) - P(n+1))
Let n>n,, assume that for al k in the range n, <k<n, P(k)is true. Then prove as a
consequence that P(n+1) istrue. In this case the term induction hypothesis refers to the stronger
assumption: [k < n: P(k) .

The strong induction form is often reparameterized asin 11 b:

Ild. Induction Step: Prove On>n,:((Ok <n:P(k)) - P(n))
Let n>n,, assume for al k in the range n, <k <n, that P(k) is true, then prove as a
consequence that P(n) istrue. In this case the induction hypothesisis Uk <n:P(K) .



In terms of the Domino analogy, the strong induction form I1d says we must show: (1) the first domino
fals, and (I1) for any n, if al dominos up to but not including the n™ domino fall, then the n™ domino
fals. From (1) and (II) we may conclude that all dominos fall. Strong Induction is most often

parameterized as in 11d, and form llc is uncommon. We present here a number of examples of Ila, 11b,
and l1d.

Examplel Provethatforal n>1:

. 2 n(n+1)(2n+1)
= 6

Proof:
Let P(n) bethe boxed equation above. We begin theinductionat n, =1.
l. Base step
1
Clearly > i’ :1:1EQ1+1)§2EL+1) , showing that P(1) istrue.
i=1
[la.  Induction Step
Let n>1 and assume P(n) istrue. That is, for this particular value of n, the boxed equation
holds. Then

n+l

Zn: i+ (n+1)?

- n(n +1)é2n ME (n+1)? (by the induction hypothesis)
_ N(n+D)(2n+1)+6(n+1)°
6
- <n+1>[[(n+1);1][[2(n+1)+1] (by some algebra)
showing that P(n+1) istrue.
We conclude that P(n) istrueforall n>1. Iy

One should aways state explicitly what is being assumed in the induction step (i.e. what is the induction
hypothesis.) One should aso make note of the point in the proof at which the induction hypothesis is
used.

Example2 Let x[OR and x#1. Show that foral n>0:

Proof:
Here we will useform I1b. Againlet P(n) bethe boxed equation. We begin theinductionat n, =0.

I Base step
0 i 0 _ _X_l . .
X =X —1——1 , showing that P(1) istrue.
i=0 X=



[Ib. Induction Step

Let n>0 and assumethat P(n-1) istrue, i.e. assume for this particular nthat: > x' =

Then

[N

n n

> K =

i=0 i

X + x"

=0

x" -1

= + Xn
Xx—=1
X"t -1

x-1

(by induction hypothesis)

showing that P(n) istrue.

Steps | and 11 provethat P(n) holdsfor al n=0.

ot x" -1

i=0 x-1"

111

n 2
Exercise Provethat for all n>1: ZiB:(n(r;lj . Do thisusing both formsIlaand Ilb.

i=1

Often the propositiona function P(n) is not a formula, but some assertion concerning other types of

mathematical structures. Recall that a graph G consists of aset V of vertices, and a set E of edges. Each
edge joins two (not necessarily distinct) vertices which we call it’s ends. Two vertices that are joined by
an edge are said to be adjacent, and an edge is said to be incident with it'stwo ends. A pathin Gisa
sequence of adjacent vertices, all of which are distinct, except possibly the first and last. A cyclein Gis
a closed path, i.e. one in which the initial and terminal vertices are identical. A graph G is said to be
connected if any two vertices are joined by a path. G iscalled acyclic if it contains no cycles. A graph T
iscaled atreeif it is both connected and acyclic. The following example uses the strong induction I1d.

Example3 Let n>1 andsuppose T isatree on nvertices. Provethat T necessarily has n—1 edges.

Proof:
Let P(n) be the statement:

. Base step

if Tisatreeon nvertices, then T contains n—1 edges.

Webeginat n, =1.

If T hasjust one vertex then, being acyclic, it can have no edges, whence P(1) holds.
[1d. Induction Step (Strong Induction)
Let n>1 and assumefor all kintherange 1<k <n, that P(k) istrue. That is, for any such k, all
trees on k vertices contain k —1 edges. Now let T be atree on n vertices. Pick any edgeein T and
removeit. Theremoval of e splits T into two subtrees, each having fewer than n vertices. Say the
two subtrees have k; and k, vertices respectively. Since no vertices were removed we must have

k, +k, =n. Then by our inductive hypothesis these two subtrees have k, -1 and k, —1 edges

respectively. Upon replacing the edge e we see that T must contain atotal of

edges.

(k,~1)+(k, -1 +1=k +k, -1=n-1



The result now follows for all trees by the second principle of mathematical induction. 111

There are many other variations on the induction technique. Occasionally we must use double induction,
which involves a modification of both the base and induction steps.

Base Step: Prove P(n,) and P(n, +1).
Induction Step: Prove On=(n,+2):(P(n-2)OP(n-1) - P(n)).

When this is accomplished we may conclude [In=n, : P(n). In terms of our domino analogy we prove

that: (I) the first two dominos fall, and (l1) if any two consecutive dominos fall, then the very next
domino falls. From this we deduce that al dominos fall. The next example uses the Fibonacci numbers
F., which are defined by the recurrence

0 if n=0
F =11 if n=1
F,+F_, ifn=2

i.e. each term is the sum of the previous two. Using this recurrence, the first few terms of the sequence
arereadily computedas F, =0,F, =L F, =1 F, =2,F, =3,... etc

Example4 Let a—g, and b—g Provethat for al n>0, T[a -b"].
Proof:
Let P(n) denote the boxed equation above.
l. Base Step
. 1 1
Observethat P(0) and P(1) aretruesince —|a’ -b°[=0=F, and —|a'-b'|=1=F,.
Leo-]-0-r, we Lfi-u]-aer

. Induction Step (Double Induction)
Let n> 2 and assume that both P(n—2) and P(n—1) aretrue, i.e. we assumefor thisn

1 1
F.,=—=[@"%-b"?| and F_ =-=[a""-b""|.
=Lt oo] = L]
The induction hypothesis yields
1
F,=F_,+F _,=——=|a"%(@+1)-b"?(b+1)|.
P = e @) - o4 )

One checks that a and b are roots of the quadratic equation x> —x—-1=0, whence a®> =a+1, and
b> =b+1. Therefore

1 1
Fn :_an-Z @2_bn—2 [B)Z :_an_bn 1
1 |- Ll-v]
showing that P(n) istrue.
Together (1) and (11) imply that F, = —=[a" —b"] forall n>0. /1]

NG



Often the proposition to be proved is an inequality, as the next example illustrates.

Example5 Define T(n) for nOZ" by the recurrence
T(n) = 0 if n=1
T(n/2)+1 if n=2

Provethat for al n>1, [T (n)<Ig(n)| (whichimplies T(n) =0O(lgn).)

Proof:
Let P(n) bethe boxed inequality above.

l. Base Step
Theinequality T(1) <Ig(1) reducesto simply 0<0, whichisobviously true, so P(1) holds.

[1d. Induction Step (Strong Induction)
Let n>1 and assume for al k in the range 1<k <n that P(k) is true i.e. T(k)<lg(k). In

particular T( n/2])<Ig n/2| when k=|n/2]. Therefore

T(n)=T(n/2])+1 (by the recurrence for T(n))
<lg/n/2]|+1 (by the induction hypothesis)
<lg(n/2)+1 (since | x |< x for any x)
<lg(n)-1g(2) +1
=lg(n),

showing that P(n) istrue.

Therefore T(n) <Ig(n) for al n>1 asclaimed. 111

Exercise Define S(n) for nO0Z™ by the recurrence

() = 0 if n=1
(n)_{s(fn/ﬂ)ﬂ if n=2

Provethat for all n=1: S(n)=Ig(n) (whence S(n) =Q(Ign).)

Induction Fallacies

The next few examples illustrate some pitfalls in constructing induction proofs. The result in Example A
below was proved correctly in Example 3. We give an invalid proof of the same fact which illustrates an
argument some authors have called the “induction trap”.

ExampleA Foral n=1,if Tisatreeon nverticesthen T has n—1 edges.

Proof: (Invalid)

Base Step: If n=1 then T has no edges, being acyclic.

Induction Step: Let n=>1 and let T be atree on n vertices. Assumethat T has n—1 edges. Add a new
vertex and join it to T with anew edge. The resulting graph has n+1 vertices and n edges (and is clearly



a tree since connectedness is maintained and no cycles were created.) By the principle of mathematical
induction, al trees on n vertices have n—1 edges. ]

Let usfirst observe that this argument does not follow the induction paradigm. In this example P(n) is of
the form A(n) — B(n) where A(n) isthe statement “T isatree on n vertices’, and B(n) is“T has n—1
edges’. Theinduction step should therefore beto prove, for al n>1, P(n) - P(n+1). Thatis

(A(n) - B(n)) - (A(n+1) - B(n+1).

To prove this we should assume A(n) - B(n), then assume A(n+1), then show as a consequence that
B(n+1) istrue. In other words we should:

» Assumeal treeson n vertices have n—1 edges
* AssumeT has n+1 vertices
» Show as aconsequence that T has n edges

The above argument did not follow this format however. Instead the arguer does the following.

* AssumeT hasn vertices
* AssumeT has n-1 edges
» Construct anew treefrom T having n+1 vertices and n edges

Therefore the above argument was not a proof by induction. Some students would nevertheless hold that
the above argument is still valid, even though it is not a true induction proof. The next example shows
convincingly that it cannot be valid. First we introduce afew more definitions related to graphs. A graph
G is caled simple if it contains no loops (i.e. edges whose end vertices are identical) and no multiple
edges (i.e. pairs of edges with the same end vertices).

ExampleB For al n>1, if Gisasimple graph on n vertices, then G has n—1 edges. (False!)

We notice right away that the above statement is false since the graph below provides an elementary
counter-example. But consider the following “proof” in light of Example A.

Proof: (Invalid)

Base Step: If n=1 then G has no edges, being ssimple.

Induction Step: Let n>1 and let G be a simple graph on n vertices. Assume that G has n—1 edges.
Add a new vertex and join it to G with a new edge. The resulting graph has n+1 vertices and n edges
(and is clearly ssmple since no loops or multiple edges were created.) By the principle of mathematical
induction, al simple graphs on n vertices have n-1 edges. []

Observe that Example B follows the format of Example A word for word. Thusif A isvalid, so must B
bevalid. But the assertion “proved” in B isfasel Therefore B cannot be avalid argument, and so neither
isA. Another fallacy comes about by not proving the induction step for al n=n,.



Example C All horses are of the same color.

Proof: (Invalid)
We prove that for all n> 1:| if Sisaset of n horses, then all horses in S have the same color.| The result
follows on letting S be the set of all horses. Let P(n) be the boxed statement, and proceed by induction

onn.

Base Step: Let n=1. Obvioudly if Sisaset consisting of just one horse, then al horsesin S must have
the same color. Thus P(2) istrue.

Induction Step: Let n>1 and assume that in any set of n horses, al horses are of the same color. Let S
beaset of n+1 horses, say S={h,,h,,h,,....h,.,}. Thenthesets

S ={h,,h;,....,h,} =S-{h}
and

S ={h,hy,.... ) = S—{h)}

each contain exactly n horses, and so by the induction hypothesis all horsesin S' are of one color, and
likewise for S". Observethat h, [0S n S" and that h, can have only one color. Therefore the color of
thehorsesin S' isidentical to that of thehorsesin S". (Note n>1= n>2 = n+1>3, sothereisin
fact athird horse, and he can have only one color.) Since S=S'[0S" it followsthat all horsesin Sare of
the same color. Thus P(n+1) is true, showing that P(n) - P(n+1) for al n>1. The result now

follows by induction. [

Obviously the proposition being proved is fase, so there is something wrong with the proof, but what?
The base step is certainly correct, and the induction step, as stated, is also correct. The problem isthat the
induction step was not quantified properly. We should have proved [In>1: P(n) - P(n+1) Instead we

proved (correctly) that [In>1:P(n) - P(n+1). Indeed it istrue that P(2) - P(3), P(3) - P(4), and
P(4) - P(5), etc.., but we never proved (and it is false that) P(1) —» P(2). In terms of the domino

analogy, it isasif the first domino falls; and if any domino indexed 2 or above were to fall, then the next
domino would fall; but the first domino is not sufficient to topple the second domino, and hence no
domino other than the first actually falls.

Appendix: Proof of the first principle of mathematical induction (form I1b).
We prove for any propositional function P(n) defined on the positive integers Z*, that

[P@ O(@n>1: P(n-1) - P(n))] - On=1:P(n)

isatautology. The proof is based on the well ordering property of the positive integers which says. Any
non-empty set of positive integers contains a least element. We assume this property without proof.

Proof:
Assume that the statementsP(1) and OOn>1:P(n-1) - P(n) aretrue. Let S={n0Z" : P(n)isfase .
It will be sufficient to show that S=0, for then P(n) is true for al n=1. Assume, to get a

contradiction, that S# [0 . Then S contains a smallest element m by the well ordering property. Since
P(@) istrue, 10S and so m#1. Therefore m>1, and m-1>1. Since misthe smallest element in S



we have m—-10S, whence P(m-1) istrue. By setting n=m in the statement [In >1: P(n—-1) - P(n)
we have P(m-1) - P(m), and since P(m-1) istrue, we conclude that P(m) isalsotrue. Thus mQJS,

contradicting the very definition of m as the smallest element in S This contradiction shows that our
assumption was false, and therefore S=[ asrequired. Iy



