## CMPS 101 <br> Midterm 1 <br> Review Problems

1. Let $f(n)$ and $g(n)$ be asymptotically non-negative functions which are defined on the positive integers.
a. State the definition of $f(n)=O(g(n))$.
b. State the definition of $f(n)=\omega(g(n))$
2. State whether the following assertions are true or false. If any statements are false, give a related statement that is true.
a. $\quad f(n)=O(g(n))$ implies $f(n)=o(g(n))$.
b. $\quad f(n)=O(g(n))$ if and only if $g(n)=\Omega(f(n))$.
c. $f(n)=\Theta(g(n))$ if and only if $\lim _{n \rightarrow \infty}(f(n) / g(n))=L$, where $0<L<\infty$.
3. Prove that $\Theta(f(n)) \cdot \Theta(g(n))=\Theta(f(n) \cdot g(n))$. In other words, if $h_{1}(n)=\Theta(f(n))$ and $h_{2}(n)=\Theta(g(n))$, then $h_{1}(n) \cdot h_{2}(n)=\Theta(f(n) \cdot g(n))$.
4. Let $f(n)$ and $g(n)$ be asymptotically positive functions (i.e. $f(n)>0$ and $g(n)>0$ for all sufficiently large $n$ ), and suppose $f(n)=\Theta(g(n))$. Does it necessarily follow that $\frac{1}{f(n)}=\Theta\left(\frac{1}{g(n)}\right)$ ? Either prove this statement, or give a counter-example.
5. Give an example of functions $f(n)$ and $g(n)$ such that $f(n)=o(g(n))$ but $\log (f(n)) \neq o(\log (g(n)))$. (Hint: Consider $n!$ and $n^{n}$ and use the corollary to Stirling's formula in the handout on common functions.)
6. Let $g(n)$ be an asymptotically non-negative function. Prove that $o((g(n)) \cap \Omega(g(n))=\varnothing$.
7. Use limits to prove the following (these are some of the exercises at the end of the asymptotic growth rates handout):
a. If $P(n)$ is a polynomial of degree $k \geq 0$, then $P(n)=\Theta\left(n^{k}\right)$.
b. For any positive real numbers $\alpha$ and $\beta: n^{\alpha}=o\left(n^{\beta}\right)$ iff $\alpha<\beta, n^{\alpha}=\Theta\left(n^{\beta}\right)$ iff $\alpha=\beta$, and $n^{\alpha}=\omega\left(n^{\beta}\right)$ iff $\alpha>\beta$.
c. For any positive real numbers $a$ and $b: a^{n}=o\left(b^{n}\right)$ iff $a<b, a^{n}=\Theta\left(b^{n}\right)$ iff $a=b$, and $a^{n}=\omega\left(b^{n}\right)$ iff $a>b$.
d. $f(n)+o(f(n))=\Theta(f(n))$.
8. Let $g(n)=n$ and $f(n)=n+\frac{1}{2} n^{2}(\sin (n)+1)$. Show that
a. $f(n)=\Omega(g(n))$
b. $f(n) \neq O(g(n))$
c. $\lim _{n \rightarrow \infty}\left(\frac{f(n)}{g(n)}\right)$ does not exist, even in the sense of being infinite.

Note: this is the 'Example C' mentioned in the handout on asymptotic growth rates.
9. Use Stirling's formula: $n!=\sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n} \cdot(1+\Theta(1 / n))$, to prove that $\log (n!)=\Theta(n \log n)$.
10. Use Stirling's formula to prove that $\binom{2 n}{n}=\Theta\left(\frac{4^{n}}{\sqrt{n}}\right)$.
11. Consider the following sketch of an algorithm called ProcessArray which performs some unspecified operation on a subarray $A[p \cdots r]$.

## ProcessArray $(A, p, r) \quad$ (Preconditions: $1 \leq p$ and $r \leq \operatorname{length}[A]$ )

1. Perform 1 basic operation
2. if $p<r$
3. $q \leftarrow\left\lfloor\frac{p+r}{2}\right\rfloor$
4. ProcessArray (A, p, q)
5. ProcessArray (A, $\mathrm{q}+1, \mathrm{r})$
a. Write a recurrence formula for the number $T(n)$ of basic operations performed by this algorithm when called on the full array $A[1 \cdots n]$, i.e. by ProcessArray $(A, 1, n)$. (Hint: recall our analysis of MergeSort.)
b. Show that the solution to this recurrence is $T(n)=2 n-1$, whence $T(n)=\Theta(n)$.
6. Consider the following algorithm which does nothing but waste time:
$\underline{\text { WasteTime }(n)}$ (pre: $n \geq 1$ )
7. if $n>1$
8. for $i \leftarrow 1$ to $n^{3}$
9. waste 2 units of time
10. for $i \leftarrow 1$ to 7
11. $\quad$ WasteTime $(\lceil n / 2\rceil)$
12. waste 3 units of time
a. Write a recurrence formula which gives the amount of time $T(n)$ wasted by this algorithm.
b. Show that when $n$ is an exact power of 2 , the solution to this recurrence relation is given by $T(n)=16 n^{3}-\frac{1}{2}-\frac{31}{2} n^{\lg 7}$, and hence $T(n)=\Theta\left(n^{3}\right)$.
13. Define $T(n)$ by the recurrence formula

$$
T(n)= \begin{cases}1 & 1 \leq n<3 \\ 2 T(\lfloor n / 3\rfloor)+4 n & n \geq 3\end{cases}
$$

Use Induction to show that $\forall n \geq 1: T(n) \leq 12 n$, and hence $T(n)=O(n)$.
14. Prove that all trees on $n$ vertices have $n-1$ edges. Do this int two ways.
a. Induction on the number of vertices.
b. Induction on the number of edges.
15. Define $S(n)$ for $n \in Z^{+}$by the recurrence:

$$
S(n)=\left\{\begin{array}{cc}
0 & \text { if } n=1 \\
S(\lceil n / 2\rceil)+1 & \text { if } n \geq 2
\end{array}\right.
$$

Use induction to prove that $S(n) \geq \lg (n)$ for all $n \geq 1$, and hence $S(n)=\Omega(\lg n)$.
16. Let $f(n)$ be a positive, increasing function that satisfies $f(n / 2)=\Theta(f(n))$. Show that

$$
\sum_{i=1}^{n} f(i)=\Theta(n f(n))
$$

(Hint: Emulate the Example on page 4 of the handout on asymptotic growth rates in which it is proved that $\sum_{i=1}^{n} i^{k}=\Theta\left(n^{k+1}\right)$ for any positive integer $k$.)
17. Use the result of the preceding problem to give an alternate proof of $\log (n!)=\Theta(n \log (n))$ that does not use Stirling's formula.
18. Let $T(n)$ be defined by the recurrence formula

$$
T(n)= \begin{cases}1 & n=1 \\ T(\lfloor n / 2\rfloor)+n^{2} & n \geq 2\end{cases}
$$

Show that $\forall n \geq 1: \quad T(n) \leq \frac{4}{3} n^{2}$, and hence $T(n)=O\left(n^{2}\right)$.

We may not get far enough for this problem. If we do I'll let you know.
19. Define $T(n)$ by the recurrence formula:

$$
T(n)= \begin{cases}7 & 1 \leq n<3 \\ 2 T(\lfloor n / 3\rfloor)+5 & n \geq 3\end{cases}
$$

a. Use the iteration method to determine a solution to the above recurrence.
b. Use the solution you found in part (a) to determine an asymptotic solution.

