CMPS 101 Midterm 1

Review Problems

Problem 19 in this handout may not be included. It depends on how far we get by Wednesday.

- 1. Let f(n) and g(n) be asymptotically non-negative functions which are defined on the positive integers.
 - a. State the definition of f(n) = O(g(n)).
 - b. State the definition of $f(n) = \omega(g(n))$
- 2. State whether the following assertions are true or false. If any statements are false, give a related statement which is true.
 - a. f(n) = O(g(n)) implies f(n) = o(g(n)).
 - b. f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$.
 - c. $f(n) = \Theta(g(n))$ if and only if $\lim_{n \to \infty} (f(n)/g(n)) = L$, where $0 < L < \infty$.
- 3. Prove that $\Theta(f(n)) \cdot \Theta(g(n)) = \Theta(f(n) \cdot g(n))$. In other words, if $h_1(n) = \Theta(f(n))$ and $h_2(n) = \Theta(g(n))$, then $h_1(n) \cdot h_2(n) = \Theta(f(n) \cdot g(n))$.
- 4. Let f(n) and g(n) be asymptotically positive functions (i.e. f(n) > 0 and g(n) > 0 for all sufficiently large n), and suppose that $f(n) = \Theta(g(n))$. Does it necessarily follow that $\frac{1}{f(n)} = \Theta\left(\frac{1}{g(n)}\right)$? Either prove this statement, or give a counter-example.
- 5. Give an example of functions f(n) and g(n) such that f(n) = o(g(n)) but $\log(f(n)) \neq o(\log(g(n)))$. (Hint: Consider n! and n^n and use the corollary to Stirling's formula in the handout on common functions.)
- 6. Let g(n) be an asymptotically non-negative function. Prove that $o((g(n)) \cap \Omega(g(n)) = \emptyset$.
- 7. Use limits to prove the following (these are some of the exercises at the end of the asymptotic growth rates handout):
 - a. If P(n) is a polynomial of degree $k \ge 0$, then $P(n) = \Theta(n^k)$.
 - b. For any positive real numbers α and β : $n^{\alpha} = o(n^{\beta})$ iff $\alpha < \beta$, $n^{\alpha} = \Theta(n^{\beta})$ iff $\alpha = \beta$, and $n^{\alpha} = \omega(n^{\beta})$ iff $\alpha > \beta$.
 - c. For any positive real numbers a and b: $a^n = o(b^n)$ iff a < b, $a^n = \Theta(b^n)$ iff a = b, and $a^n = \omega(b^n)$ iff a > b.
 - d. $f(n) + o(f(n)) = \Theta(f(n))$.

8. Let g(n) = n and $f(n) = n + \frac{1}{2}n^2(\sin(n) + 1)$. Show that

a.
$$f(n) = \Omega(g(n))$$

b.
$$f(n) \neq O(g(n))$$

c.
$$\lim_{n\to\infty} \left(\frac{f(n)}{g(n)}\right)$$
 does not exist, even in the sense of being infinite.

Note: this is the 'Example C' mentioned in the handout on asymptotic growth rates.

9. Use Stirling's formula:
$$n! = \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot (1 + \Theta(1/n))$$
, to prove that $\log(n!) = \Theta(n \log n)$.

10. Use Stirling's formula to prove that
$$\binom{2n}{n} = \Theta\left(\frac{4^n}{\sqrt{n}}\right)$$
.

11. Consider the following *sketch* of an algorithm called ProcessArray which performs some unspecified operation on a subarray $A[p \cdots r]$.

<u>ProcessArray(A, p, r)</u> (Preconditions: $1 \le p$ and $r \le \text{length}[A]$)

- 1. Perform 1 basic operation
- 2. if p < r

$$3. \qquad q \leftarrow \left\lfloor \frac{p+r}{2} \right\rfloor$$

- 4. ProcessArray(A, p, q)
- 5. ProcessArray(A, q+1, r)
- a. Write a recurrence formula for the number T(n) of basic operations performed by this algorithm when called on the full array $A[1\cdots n]$, i.e. by ProcessArray(A, 1, n). (Hint: recall our analysis of MergeSort.)
- b. Show that the solution to this recurrence is T(n) = 2n 1, whence $T(n) = \Theta(n)$.
- 12. Consider the following algorithm which does nothing but waste time:

 $\underline{\text{WasteTime}(n)} \quad (\text{pre: } n \ge 1)$

1. if
$$n > 1$$

2. for
$$i \leftarrow 1$$
 to n^3

4. for
$$i \leftarrow 1$$
 to 7

5. WasteTime
$$(\lceil n/2 \rceil)$$

- a. Write a recurrence formula which gives the amount of time T(n) wasted by this algorithm.
- b. Show that when n is an exact power of 2, the solution to this recurrence relation is given by $T(n) = 16n^3 \frac{1}{2} \frac{31}{2}n^{1g7}$, and hence $T(n) = \Theta(n^3)$.

13. Define T(n) by the recurrence formula

$$T(n) = \begin{cases} 1 & 1 \le n < 3 \\ 2T(\lfloor n/3 \rfloor) + 4n & n \ge 3 \end{cases}$$

Use Induction to show that $\forall n \ge 1$: $T(n) \le 12n$, and hence T(n) = O(n).

- 14. Prove that all trees on n vertices have n-1 edges. Do this by (a) induction on the number of vertices, and (b) by induction on the number of edges.
- 15. Define S(n) for $n \in \mathbb{Z}^+$ by the recurrence:

$$S(n) = \begin{cases} 0 & \text{if } n = 1\\ S(\lceil n/2 \rceil) + 1 & \text{if } n \ge 2 \end{cases}$$

Use induction to prove that $S(n) \ge \lg(n)$ for all $n \ge 1$, and hence $S(n) = \Omega(\lg n)$.

16. Let f(n) be a positive, increasing function that satisfies $f(n/2) = \Theta(f(n))$. Show that

$$\sum_{i=1}^{n} f(i) = \Theta(nf(n))$$

(Hint: Emulate the **Example** on page 4 of the handout on asymptotic growth rates in which it is proved that $\sum_{i=1}^{n} i^{k} = \Theta(n^{k+1})$ for any positive integer k.)

- 17. Use the result of the preceding problem to give an alternate proof of $\log(n!) = \Theta(n\log(n))$ that does not use Stirling's formula.
- 18. Let T(n) be defined by the recurrence formula

$$T(n) = \begin{cases} 1 & n=1 \\ T(\lfloor n/2 \rfloor) + n^2 & n \ge 2 \end{cases}$$

Show that $\forall n \ge 1$: $T(n) \le \frac{4}{3}n^2$, and hence $T(n) = O(n^2)$.

We may not get far enough for this problem. If we do I'll let you know.

19. Define T(n) by the recurrence formula:

$$T(n) = \begin{cases} 7 & 1 \le n < 3 \\ 2T(\lfloor n/3 \rfloor) + 5 & n \ge 3 \end{cases}$$

- a. Use the iteration method to determine a solution to the above recurrence.
- b. Use the solution you found in part (a) to determine an asymptotic solution.