CMPS 101
Algorithmsand Abstract Data Types
Summer 2009

Programming Assignment 4
Breadth First Search and Shortest Pathsin Graphs
Due Monday August 3, 10:00 pm

The purpose of this assignment is to implement a Graph Afd associated algorithms in C. This
project will utilize your List ADT from programming assigent 2, so spend some time going over the
grader's comments from that assignment to make surelLysius working properly. Begin by reading
appendices B.4 and B.5 (p. 1080-1091) and sections 22.1 and 22.2 (p. 526+538gftext.

The adjacency list representation of a graph conefsen array of Lists. Each List corresponds to a
vertex in the graph and gives the neighbors of thaéxer~or example, the graph

1 2

3 4 5 6
has adjacency list representation

QOhwhR

NN R RN

S N AN NN
o0 o
o

You will create a Graph ADT which represents a graphmaareay of ListRefs. Each vertex will be
associated with an integer label in the range 1, wwheren is the number of vertices in the graph. Your
program will use this Graph ADT to find shortest pathe fpaths with the fewest edges) between pairs of
vertices. The client program which uses your Graph AWITbe calledFi ndPat h, and will take two
command line arguments (heér@enotes the unix prompt):

% Fi ndPath input_file output _file

In this project, as in pa2, you are to write a Makefileich creates the executable file FindPath. One
possible Makefile, which you may alter as you see fihatuded at the end of this document.

File Formats

The input file will be in two parts. The first part begiwith a line consisting of a single integemwhich
gives the number of vertices in the graph. Each subsetjenvill represent a single edge in the graph
by a pair of distinct numbers in the range htgeparated by a space. These numbers are the endsrertic
of the corresponding edge. The first part of the ingetdefines the graph, and will be terminated by a
dummy line containing® 0”. After these lines are read your program will prine tadjacency list

representation of the graph to the output file. Foramst, the lines below define the graph pictured
above, and cause the above adjacency list represertati@ printed.

QUL WMNNNREFPPFPO
SCouh~,OOIA,WN

The second part of the input file will consist of a numtiielines, each consisting of a pair of integers in
the range 1 tm, separated by a space. Each line specifies a pairtafegem the graph; a starting point
(or source) and a destination. The second part of the fitgutill also be terminated by the dummy line
“0 0". For each source-destination pair your program willtaofollowing:

e Perform a Breadth First Search (BFS) on the given sogmrtex. This assigns a parent vertex (which
may be nil) to every vertex in the graph. The BFS ritlgm will be discussed in class and is
described in general terms below. The pseudo-code forcBR8e found on page 532 of the text.

e Use the results of BFS to print out the distance ftioensource vertex to the destination vertex, then
use the parent pointers to print out a shortest path 8ource to destination. (See the algorithm
Print-Path on p. 538 of the text.)

Examples

Input File: Output File:

6 1. 2 3

12 2. 1456

13 3: 14

2 4 4: 2 35

25 5. 246

2 6 6: 25

34

4 5 The distance froml1l to 5is 2
56 A shortest 1-5 path is: 1 25
00

15 The distance from3 to 6 is 3
3 6 A shortest 3-6 path is: 3126
2 3

4 4 The distance from2 to 3 is 2
00 A shortest 2-3 path is: 2 1 3

The di stance from4 to 4 is O
A shortest 4-4 path is: 4

If there is no path from source to destination (whicly immappen if the graph is disconnected), then your
program should print a message to that effect. Notelibae may be more than one shortest path. The
particular path discovered by BFS depends on the order irhvithgteps through the vertices in your
adjacency lists. This order is not specified in theupe-code for BFS. Thus your output may differ from
the above on the very same input. The following examggeesents a disconnected graph.

Input File: Output File:
1: 45
2. 36
3: 27
4: 15
5. 1 4
6: 27
7: 36

The di stance from2 to 7 is 2
A shortest 2-7 path is: 2 37
The di stance from3 to 6 is 2
A shortest 3-6 path is: 3 2 6

OFRP WNOOWNNRAREPELN
ONO~NO~N~NOWOLOl A~

The distance from1l to 7 is infinity
No 1-7 path exists

Your program’s operation can be broken down into twachsteps, corresponding to the two groups of
input data.

1. Read and store the graph and print out its adjacenagfistsentation.

2. Enter a loop which processes the second part of the irpauth iteration of the loop should read in
one pair of vertices (source, destination), run BFShendource vertex, print the distance to the
destination vertex, then find and print the resulting gsbipath, if it exists, or print a message if no
path from source to destination exists.

What is Breadth First Search? Given a gr&phand a vertexs, called thesource vertex, BFS
systematically explores the edges®fo discover every vertex that is reachable fionit computes the
distance froms to all such reachable vertices. It also produces a dbndast tree” with roots that
contains all reachable vertices. For any vevtexachable frons, the unique path in the breadth-first tree
from sto v is a shortest path @ fromstov. Breadth First Search is so named because it expla@ds
frontier between discovered and undiscovered verticdsramy across the breadth of the frontier; i.e. the
algorithm discovers all vertices at distahkciEom s before discovering any vertices at distaked. To
keep track of its progress and to construct the breadthifes, BFS requires that each vertein G
possess the following attributes: a cotmfor[v] which may be white, gray, or black; a distarufg]
which is the distance from souredo vertexv; and a parent (or predecesspy] which points to the
parent ofv in the breadth-first tree. At any point during the exien of BFS, the white vertices are those
which are as yet undiscovered, black vertices are disedyve@nd the gray vertices form the frontier
between discovered and undiscovered vertices. BFSa$d50 queue to manage the set of gray
vertices. You will use your List ADT from pa2 to impient both this FIFO queue, and the adjacency
lists which represent the graph itself.

Your Graph ADT will be implemented in filesr aph. ¢ andG aph. h. Graph. ¢ will define a struct
called Graph, an@r aph. h will define a type called GraphRef which points to thisst (It would be a
good idea at this point to re-read the handout entitled "ABId Modules in Java and Ansi C", paying
special attention to the section on implementing ADT<C, as well as the handout entitled "Some
Additional Remarks on ADTs and Modules in Ansi C".) thN@ut going any further into the details of
BFS, we can see a need for the following fields in y@&raph struct:

e An array of Lists whos&" element contains the neighbors of veiitex

e Anarray of ints (or chars, or Strings) wha$element is the color (white, gray, black) of veritex
e An array of ints whosé" element is the parent of vertex

e An array of ints whosg" element is the distance from the (most recent)csotar vertex.

You should also include fields which store the number ofice= (called theorder of the graph), the
number of edges (called tiseze of the graph), and the label of the vertex that wag mexently used as
source for BFS. It is recommended that all arraysfdength n+1, wheren is the number of vertices in
the graph, and that only indices 1 throughe used. This is so that array indices can be ideohtifith
vertex labels.

Your Graph ADT is required to export the following openasiethrough the fil&r aph. h:

[*** Constructors-Destructors ***/
G aphRef newG aph(int n);
void freeG aph(G aphRef* pG;

[*** Access functions ***/

int getOrder (G aphRef G ;

int getSize(G aphRef G;

i nt get Source(G aphRef G;

int getParent (G aphRef G int u);

int getDist(GaphRef G int u);

void getPath(ListRef L, GaphRef G int u);

[*** Mani pul ation procedures ***/

void makeNul | (G aphRef G);

voi d addEdge(G aphRef G int u, int v);
void addArc(G aphRef G int u, int v);
void BFS(G aphRef G int s);

[*** Other operations ***/
void printGaph(FI LE* out, G aphRef G;

In addition to the above prototypeS; aph. h will define the typeGr aphRef, as well as #defi ne

constant macros NF and NI L, representing infinity and a blank vertex label, retipely. For the
purpose of implementing BFS, any negative value is an adequate choice faxF, and any non-
positivei nt can stand in foNl L, since all valid vertex labels will be positive integjer

FunctionnewGr aph() returns aGr aphRef pointing to a newly create@ aph struct representing the
null graph onn vertices, i.e. a graph havimgvertices and no edges. FunctioreeG aph() frees all
dynamic memory associated with tBeaphRef *pG, then setspGto NULL. Functiongget Order (),
get Si ze() will return the corresponding field values, aget Sour ce() will return the source vertex
most recently used in functi@dFS(), orN L if BFS() has not yet been called. Functmet Par ent ()
will return the parent of vertex in the Breadth-First tree created®FS(), or NI L if BFS() has not yet
been called. Functioget D st () returns the distance from the most recent BFS sdareertexu, or

I NF if BFS() has not yet been called. Functiget Pat h() appends to the Lidt the vertices of a
shortest path i from source tai, or appends tb the valueNl L if no such path existsget Pat h() has
the preconditiorget Source(G ! =NL, so thatBFS() must be called beforget Pat h(). Functions

get Parent (), get Di st () andget Pat h() all have the preconditioh<u<getOrde(G). Function

makeNul | () deletes all edges @b, restoring it to its original state, i.e. a nullagh onn vertices.
addEdge() inserts a new edge joiningto v, i.e. u is added to the adjacency List \gfandv to the
adjacency List ofi. addArc() inserts a new directed edge frento v, i.e.v is added to the adjacency
List of u (but notu to the adjacency List of). BothaddEdge() andaddArc() have the precondition
that their twoi nt arguments must lie in the range IJgta Or der (G . FunctionBFS() runs the Breadth
First Search algorithm on the Gra@nhwith sources, setting the color, distance, and parent field& of
accordingly. Finally, functiomri nt G aph() prints the adjacency list representationGfo the file
pointed to by out. The format of this representatshould match the above examples, so all that is
required by the client is a single callgoi nt Gr aph() .

As in all ADT modules written in C, you must incic test client calle@r aphTest . c that exercises
your Graph operations in isolation. Observe thatesthe Graph ADT includes an operation that has a
List argument (namelget Pat h()), any client of Graph is also a client of List,damust therefore

#i ncl ude the fileLi st. h. This goes for botler aphTest. ¢ andFi ndPat h. c. Note however that

Li st. h must be#i ncl uded’ed beforeGr aph. h, otherwise the compiler will choke on the prot@aypr

get Pat h(). This is just one of the subtleties one facesnymi®gramming in Ansi C (as opposed to
Java). You will submit nine files in all for thisrqggect: Li st.c, Li st.h, Li st Test.c, Graph. c,

G aph. h, GraphTest . c, Fi ndPat h. c, Makef i | e, andREADME. You may use the following Makefile
as a starting point. Note that the comman#ie (or gmake) alone will compile the first target in the
Makefile, along with all its dependent targets, l&hiake t ar get will compile any other target.

Makefile for Programm ng Assignnent 4

Fi ndPat h: Fi ndPath.o Graph.o List.o
gcc -0 FindPath FindPath.o Graph.o List.o

FindPath.o : FindPath.c G aph.h List.h
gcc -c -ansi -Wall FindPath.c

G aphTest: G aphTest.o Gaph.o List.o
gcc -0 GaphTest GraphTest.o Graph.o List.o

G aphTest.o : GraphTest.c Gaph.h List.h
gcc -c -ansi -Wall GraphTest.c

Graph.o : Gaph.c Gaph.h List.h
gcc -c -ansi -\Wall Graph.c

ListTest: ListTest.o List.o
gcc -0 ListTest ListTest.o List.o

ListTest.o : ListTest.c List.h
gcc -c -ansi -Wall ListTest.c

List.o : List.c List.h
gcc -c -ansi -Wall List.c

clean :
rm-f FindPath G aphTest ListTest FindPath.o \
G aphTest.o ListTest.o Graph.o List.o

