CMPS 101

Summer 2009

Homework Assignment 8 (practice only, do not turn in)

1. (1 Point) 12.2-1

Suppose that we have numbers between 1 and 1000 in a binary search tree and want to search for the number 363 . Which of the following sequences could not be the sequence of nodes examined?
a. $2,252,401,398,330,344,397,363$.
b. $924,220,911,244,898,258,362,363$.
c. $925,202,911,240,912,245,363$.
d. $2,399,387,219,266,382,381,278,363$.
e. $935,278,347,621,299,392,358,363$.

Note: Some of the topics represented by the following problems my not be covered by end of business Tuesday $\mathbf{8 / 1 1 / 0 9}$. If that is the case, those topics will not appear on the final exam.
2. (1 Point) 12.2-6

Let x be a node in a Binary Search Tree, all of whose keys are distinct. Suppose that x has no right child, and that x has a successor, call it y. Prove that y is the lowest ancestor of x whose left child is also an ancestor of x. Note that x is considered to be it's own ancestor, so it is possible that left $[y]=x$. (Hint: do this problem in 3 steps. First show that y must be an ancestor of x by eliminating the possibility that it is either a descendent of x or a cousin of x; second, show the same thing for left $[y]$; third, show by contradiction that there is no ancestor of x which is lower than y, and which has the same properties. All steps boil down to a careful application of the BST properties.)
3. (1 Point)

Insert the following keys (in order) into an initially empty Binary Search Tree, and draw the BST structure that results: $26,41,47,17,14,30,10,38,28,21,19,12,16,39,23,20,15,7,35,3$. Determine an assignment of colors Red and Black to the nodes in this tree so as to satisfy the RedBlack Tree properties.
4. (1 Point) 13.1-5

Show that the longest simple path from a node x_{0} in a red-black tree to a descendant leaf has length at most twice that of the shortest simple path from node x to a descendant leaf.

