CMPS 101
Algorithmsand Abstract Data Types

Recurrence Relations

Iteration Method
Recall the following example from the induction handout.

0 n=1

Tn= {T(Ln/zj)ﬂ n>2

We begin by illustrating a solution technique calleatation, which consists of repeatedly substituting
the recurrence into itself until a pattern emerges.

T(n)=1+T(n/2])
~1+1+T(|[n/2)/2)) = 2+ T([n/22))
= 2+1+T(|[nr22)r2]) = 3+ T(|n12*))

K+ T(|nr24))

This process must terminate when the recursion deghat its maximum, i.e. whetnlzkal. To
solve this equation fdt in terms o, we use the inequality definition of the floor function.

1<n/2*<?2
2<n< 2t
k<lg(n)<k+1

k=lg(n) ]

Thus for the recursion depth:\_lg(n)J we haveT(\_n/Z"J) =T (@) =0, and hence the solution to the
above recurrence iB(n) =|Ig(n) |. It follows thatT (n) = ©(log(n )).

Exercise
Check directly thafl (n) = \_Ig(n)J is the solution to the above recurrence relatiencheck thafl 1) = 0

and for anyn> 2, thatT(n)=1+T(|n/2]).

Exercise
Use this same technique to show that the recurrence

S(m) = 0 n=1
(n)_{sdn/zbu n>2

has solutionS(n) =[Ig(n) |, and hence als&(n) = O(log(n .))



Comparing the solutions to the preceding examplessee that replacing floor | by ceiling[ | has no
affect on theasymptotic solution ©(log(n)), while theexact solutions are different:|Ig(n) | vs. [lg(n)].

We can change other details in a recurrence witbbahging the asymptotic solution. The following
recurrence satisfies(n) = ©(log(n Ypr any values of the constantsd, andn, .

1<n<n,

C
T(n):{T(\_n/ZJHd nxn,

Exercise Use the iteration method to determine the exalotion to this recurrence when=3, d =5,
andn, = 10 (Answer:T(n)= 5\_Ig(n /10)J + 8 for n>10, whenceT (n) = ®(log(n )))

Often it is difficult or impossible to determine @xact solution via the iteration method, whilast
possible to obtain an asymptotic solution. Conside

2
Upon iterating this recurrence we find(n) = E}J + 1, where k:\_lg nJ. We can use this

Il
o

expression to show that(n) = ®@(n* .)

(from a well known summation formula)

_ (1/4)ij + 1 (since| x| < x)

n? [1— L j +1 (sincellgn]<ign)

= —n’ [1—ij +1 (since4?" =n% =n?)

ThereforeT(n)=0(n* ) We leave it as an exercise to show in a sintitanner thatT (n) =Q(n* )
whenceT (n) = 0(n” )



The Master Method
This is a method for finding (asymptotic) solutidogecurrences of the form

T(n)=aT(n/b)+ f(n)

where a>1, b>1, and the functionf(n )is asymptotically positive. Her&(n/b {lenotes either
T(n/b)) or T((n/b]), and it is understood that(n)=© (Br some finite set of initial terms. Such a

recurrence describes the run time of a 'divide @mbuer' algorithm which divides a problem of size
into a subproblems, each of siz&b. In this contextf (n )represents the cost of doing the dividing and

re-combining.

Master Theorem
Let a>1, b>1, f(n) be asymptotically positive, and I&t(n De defined byT(n)=aT(n/b)+ f(n )
Then we have three cases:

(1) If f(n)=0(n"»®=) for somes >0, thenT (n) = O(n°>@ ).

) If f(n)=0(n*®), thenT(n)=0(N"*.log(n)).

@) If f(n)=Q(n"*@*) for some £>0, and if af (n/b)<cf(n) for some O<c<1 and for all
sufficiently largen, thenT (n) = @(f (n)) :

Remarks In each case we compafgn td the polynomialn®®»®  and the solution is determined by
which function is of an asymptotically higher ordén case (1)n°*® is polynomially larger tharf (n )
and the solution is in the claﬁ(n"’gb‘a)). In case (3)f(n )is polynomially larger (and an additional
regularity condition is met) so the solution i@(f(n)). In case (2) the functions are asymptotically
equivalent and the solution is in the cla(één"’gb‘a) -Iog(n)), which is the same a8(f (n)-log(n)). To
say thatn®® is polynomially larger than f(n) as in (1), means thaf (n i bounded above by a

function which is smaller than®®»® by a polynomial factor, namelg® for somes >0. Note that the
conclusion reached by the master theorem does hatge if we replacef(n )by a function
asymptotically equivalent to it. For this reasohe trecurrence may simply be given as
T(n)= aT(n/b)+®(f (n)). Notice also that there is no mention of initedms. It is part of the content
of the master theorem that the initial values efridcurrence do not effect it's asymptotic solution

Examples
Let T(n)=8T(n/2)+n® so thata=8, b=2, andlog, (a) = 3 Hencef(n)=n®= @(n"’gb‘a)), SO we are
in case (2). Therefor€(n) =®(n*log(n .))

Now let T(n) =5T(n/4)+n. Herea=5, b=4, log,(a)=1.609..>1. Lete¢=Ilog,(5)—- 1so thate >0,
and f(n)=n= O(n"’g“(‘r’)"“' ) Therefore we are in case (1) ahth) = @(nlog4(5) )

Next considerT (n) =5T(n/4)+n*. Againa=5, b=4, solog,(a)=1.609..< 2 Let¢=2-log, (5),

so thate >0, and f(n)=n? =Q(n'°g4(5)”). We appear to be in case (3), but we must dtdick the
regularity condition:5f (n/4) <cf (n )for someO<c<1 and all sufficiently larg@. This inequality says



5(n/4)* <cn?, i.e. (5/16)n* <cn?, which is true as long asis chosen to satisf$/16<c<1. By case
(3) of the Master Theoreffi(n) =@(n* .)

Note that in applying the Master Theorem, we cavags replacef (n )y some simpler function that is
asymptotically equivalent to it. This is part bétcontent of the theorem since the hypothesiach ease
refers only to the asymptotic growth rate bfn . %o for instance, if we were to replagg in the first
example above withf (n) =10n° +15n* —n*® +nlog(n) + ,the analysis would be in no way different, and

the recurrence would have the very same asympsotigtion. (Of course the exact solution to the
recurrence would be very different.)

Observe also that in the three preceding examdlés) was a polynomial. This is a particularly easy
setting to apply the Master Theorem, since to é&stalwvhich case to use, one merely compateg(f )
to the numberlog,(a ) If they are the same, case (2) applieslodf, (a is Jarger, case (1) applies by
setting ¢ =log, (a) —deg(f ). If deg(f) is larger, case(3) applies by setting deg(f ) —log, (a , apd the
regularity condition is easily checked. Exgrcise: prove that if f(n) is a polynomial, and if
deg(f) > log,(a), then the regularity condition necessarily holds.)

Checking the hypotheses can be a little more caeugd if f(n) is not a polynomial. For example
consider T(n)=T( n/2))+2T((n/2]) +log(n'). We first re-write this asT(n)=3T(n/2)+nlog(n .)

Upon letting gzé(logz(?;)—l), we have £>0, and 1+&=10g9,(3)—¢. One checks easily that

nlog(n) = o(n**) , whencenlog(n) = O(n**) = O(n"%:® ) Case (1) now giveF(n) = O(n"%=® )

In spite of the name “Master Theorem” the threeesasto not cover all possibilities. There is a gap
between cases (1) and (2) whefi*® is larger thanf(n ) but not polynomially larger. Take for
example the recurrenc&(n)=2T(n/2) + n/log(n . )Observe thamn/log(n) =w(n** Yor any ¢ >0,
whence n/ Iog(n);so(nl*“’), and therefore we are not in case (1). But al$tog(n) =o(n , so) that
n/log(n) # ®(n), and neither are we in case (2). Thus the MaBteorem cannot be applied to this
recurrence. A similar gap exists between casear(@)3). It is also possible that the regulac@yndition

in case (3) fails, even though(n) =Q(n'°gb‘a)*“’) for somee >0.



