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CMPS 101 
Algorithms and Abstract Data Types 
 

Recurrence Relations 
 
Iteration Method   
Recall the following example from the induction handout. 
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We begin by illustrating a solution technique called Iteration, which consists of repeatedly substituting 
the recurrence into itself until a pattern emerges. 
 

  )2/(1)( nTnT +=  

             )2/(2)2/2/(11 2nTnT +=++=  

             )2/(3)2/2/(12 32 nTnT +=++=  

         M  
          )2/( knTk +=  

 
This process must terminate when the recursion depth k is at its maximum, i.e. when   12/ =kn .  To 

solve this equation for k in terms of n, we use the inequality definition of the floor function. 
 

           22/1 <≤ kn  
∴       122 +<≤ kk n  
∴       1)lg( +<≤ knk  

∴        )lg(nk =  
 
Thus for the recursion depth  )lg(nk =  we have   0)1()2/( == TnT k , and hence the solution to the 

above recurrence is  )lg()( nnT = .  It follows that ))(log()( nnT Θ= . 
 
Exercise  
Check directly that  )lg()( nnT =  is the solution to the above recurrence relation, i.e. check that 0)1( =T , 

and for any 2≥n , that   )2/(1)( nTnT += . 
 
Exercise  
Use this same technique to show that the recurrence 
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has solution  )lg()( nnS = , and hence also ))(log()( nnS Θ= . 
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Comparing the solutions to the preceding examples, we see that replacing floor    by ceiling    has no 

affect on the asymptotic solution ))(log(nΘ , while the exact solutions are different:  )lg(n  vs.  )lg(n .  
We can change other details in a recurrence without changing the asymptotic solution.  The following 
recurrence satisfies ))(log()( nnT Θ=  for any values of the constants  c, d, and 0n . 
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Exercise   Use the iteration method to determine the exact solution to this recurrence when 3=c , 5=d , 
and 100 =n .  (Answer:   8)10/lg(5)( += nnT  for 10≥n , whence ))(log()( nnT Θ= .) 
 
Often it is difficult or impossible to determine an exact solution via the iteration method, while it is 
possible to obtain an asymptotic solution.  Consider 
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Upon iterating this recurrence we find 1
2
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nT , where  nk lg= .  We can use this 

expression to show that )()( 2nnT Θ= .   
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4 2 += n  

          )( 2nO=  
 
Therefore )()( 2nOnT = .  We leave it as an exercise to show in a similar manner that )()( 2nnT Ω= , 

whence )()( 2nnT Θ= .   
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The Master Method 
This is a method for finding (asymptotic) solutions to recurrences of the form  
 

)()/()( nfbnaTnT +=  
  
where 1≥a , 1>b , and the function )(nf  is asymptotically positive.  Here )/( bnT  denotes either 

 )/( bnT  or  )/( bnT , and it is understood that )1()( Θ=nT  for some finite set of initial terms.  Such a 

recurrence describes the run time of a 'divide and conquer' algorithm which divides a problem of size n 
into a subproblems, each of size bn / .  In this context )(nf  represents the cost of doing the dividing and 
re-combining. 
 
Master Theorem 
Let 1≥a , 1>b , )(nf  be asymptotically positive, and let )(nT  be defined by )()/()( nfbnaTnT += .  
Then we have three cases: 
 
(1) If ( )ε−= )(log)( abnOnf  for some 0>ε , then ( ))(log)( abnnT Θ= . 

(2) If ( ))(log)( abnnf Θ= , then ( ))log()( )(log nnnT ab ⋅Θ= . 

(3) If ( )ε+Ω= )(log)( abnnf  for some 0>ε , and if )()/( ncfbnaf ≤  for some 10 << c  and for all 

sufficiently large n, then ( ))()( nfnT Θ= . 
 
Remarks  In each case we compare )(nf  to the polynomial )(log abn , and the solution is determined by 

which function is of an asymptotically higher order.  In case (1) )(log abn  is polynomially larger than )(nf  

and the solution is in the class ( ))(log abnΘ .  In case (3) )(nf  is polynomially larger (and an additional 

regularity condition is met) so the solution is ( ))(nfΘ .  In case (2) the functions are asymptotically 

equivalent and the solution is in the class ( ))log()(log nn ab ⋅Θ , which is the same as ( ))log()( nnf ⋅Θ .  To 

say that )(log abn  is polynomially larger than )(nf  as in (1), means that )(nf  is bounded above by a 

function which is smaller than )(log abn  by a polynomial factor, namely εn  for some 0>ε .  Note that the 
conclusion reached by the master theorem does not change if we replace )(nf  by a function 
asymptotically equivalent to it.  For this reason the recurrence may simply be given as 

( ))()/()( nfbnaTnT Θ+= .  Notice also that there is no mention of initial terms.  It is part of the content 
of the master theorem that the initial values of the recurrence do not effect it’s asymptotic solution. 
 
Examples 
Let 3)2/(8)( nnTnT +=  so that 8=a , 2=b , and 3)(log =ab .  Hence ( ))(log3)( abnnnf Θ== , so we are 

in case (2).  Therefore ))log(()( 3 nnnT Θ= . 
 
Now let nnTnT += )4/(5)( .  Here 5=a , 4=b , 1...609.1)(log >=ab .  Let 1)5(log4 −=ε  so that 0>ε , 

and ( )ε−== )5(log4)( nOnnf .  Therefore we are in case (1) and ( ))5(log4)( nnT Θ= . 
 
Next consider 2)4/(5)( nnTnT += .  Again 5=a , 4=b , so 2...609.1)(log <=ab .  Let )5(log2 4−=ε , 

so that 0>ε , and ( )ε+Ω== )5(log2 4)( nnnf .  We appear to be in case (3), but we must still check the 
regularity condition: )()4/(5 ncfnf ≤  for some 10 << c  and all sufficiently large n.  This inequality says 
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22)4/(5 cnn ≤ , i.e. 22)16/5( cnn ≤ , which is true as long as c is chosen to satisfy 116/5 <≤ c .  By case 

(3) of the Master Theorem )()( 2nnT Θ= . 
 
Note that in applying the Master Theorem, we can always replace )(nf  by some simpler function that is 
asymptotically equivalent to it.  This is part of the content of the theorem since the hypothesis in each case 
refers only to the asymptotic growth rate of )(nf .  So for instance, if we were to replace 3n  in the first 

example above with 1)log(1510)( 5.123 ++−+= nnnnnnf , the analysis would be in no way different, and 
the recurrence would have the very same asymptotic solution.  (Of course the exact solution to the 
recurrence would be very different.) 
 
Observe also that in the three preceding examples, )(nf  was a polynomial.  This is a particularly easy 
setting to apply the Master Theorem, since to establish which case to use, one merely compares )deg(f  

to the number )(log ab .  If they are the same, case (2) applies.  If )(log ab  is larger, case (1) applies by 

setting )deg()(log fab −=ε .  If )deg(f  is larger, case(3) applies by setting )(log)deg( af b−=ε , and the 

regularity condition is easily checked.  (Exercise: prove that if )(nf  is a polynomial, and if 

)(log)deg( af b> , then the regularity condition necessarily holds.) 

 
Checking the hypotheses can be a little more complicated if )(nf  is not a polynomial.  For example 

consider     )!log()2/(2)2/()( nnTnTnT ++= .  We first re-write this as )log()2/(3)( nnnTnT += .  

Upon letting )1)3((log
2

1
2 −=ε , we have 0>ε , and εε −=+ )3(log1 2 .  One checks easily that 

)()log( 1 ε+= nonn , whence )()()log( )3(log1 2 εε −+ == nOnOnn .  Case (1) now gives )()( )3(log2nnT Θ= . 
 
In spite of the name “Master Theorem” the three cases do not cover all possibilities.  There is a gap 
between cases (1) and (2) when )(log abn  is larger than )(nf , but not polynomially larger.  Take for 

example the recurrence )log(/    )2/(2)( nnnTnT += .  Observe that )()log(/ 1 εω −= nnn  for any 0>ε , 

whence ( )ε−≠ 1)log(/ nOnn , and therefore we are not in case (1).  But also )()log(/ nonn = , so that 
)()log(/ nnn Θ≠ , and neither are we in case (2).  Thus the Master Theorem cannot be applied to this 

recurrence.  A similar gap exists between cases (2) and (3).  It is also possible that the regularity condition 
in case (3) fails, even though ( )ε+Ω= )(log)( abnnf  for some 0>ε . 
 
 
 
 
 


