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CMPS 101 
Algorithms and Abstract Data Types 
 

Introduction to Algorithm Analysis  
 
Summary of the Theory Side of this Course 

• Mathematical Preliminaries 
o Asymptotic growth rates of functions 
o Some common functions and their properties 
o Induction Proofs 
o Recurrences 

• Standard ADTs 
o Elementary Data Structures like Stacks, Queues, and Lists 
o Graphs and Directed Graphs 
o Priority Queues 
o Disjoint Sets 
o Binary Search Trees and Red-Black Trees 
o Dictionaries 
o Hash Tables 

• Algorithms Associated with these ADTs 
o Sorting and Searching 
o Breadth First Search, Depth First Search, Shortest Paths, Minimum Weight 

Spanning Trees 
o Insertion and Deletion in Balanced Trees 

• Run Time Analysis of these Algorithms 
 
Some Sorting Algorithms 
A classic problem in Computer Science is that of sorting a collection of objects in increasing order.  
We assume for the moment that the objects to be sorted are stored in an array A of fixed length n.   
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Our convention is that array indices range from 1 to ][length An =  (not 0 to 1−n , as in many computer 

languages).  We denote the subarray with indices ranging from i to j by ) , ,(][ ji AAjiA KL = .  If ji >  

this is understood to denote the empty array, i.e. an array of length 0.  We begin by analyzing two 
algorithms that solve this problem: Insertion Sort and Merge Sort. 
 

InsertionSort(A) 
1.) for  2←j   to  n 

2.)      temp jA←  

3.)      1−← ji  

4.)      while  0>i   and  temp iA<  

5.)           ii AA ←+1  

6.)           1−← ii  
7.)      ←+1iA temp 
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If this notation is not absolutely clear, read the pseudo-code conventions outlined on pages 19-20 of 
the text.  In particular, notice that the left arrow "← " stands for the assignment operator, and that loop 
bodies and conditional branches are indicated solely by indentation, not by braces or other punctuation 
characters.  Also there are no semicolons, parenthesis, or brackets, and local variables need not be 
declared before use.   
 
Notice that on the jth iteration of loop 2-7, the subarray )]1(1[ −jA L  is already sorted, while ][ njA L  

is unsorted.  Steps 3-7 have the effect of inserting jA  into its correct position in )]1(1[ −jA L , thus 

expanding the sorted section by exactly 1. 
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Exercise:  Trace InsertionSort(A) on )6 ,2 ,7 ,4 ,1 ,3 ,5 ,8(=A  
 
We wish to determine the run time )(nT  of this algorithm as a function of the input size n.  This 
analysis should be, as far as possible, independent of the computing machine that is executing the 
algorithm.  Let kc  denote the cost of step k.  We remain uncommitted as to just what units or even 

what quantity kc  measures.  This could be processor time in seconds, or power consumed in watts, or 
even some appropriate monetary unit.  As we shall see, details of this kind are not critical to the 
analysis.  Thus for instance, 2c  and 3c  represent the costs of assignment operations, while 1c  and 4c  

are the costs of performing tests of loop repetition conditions.  Notice that 2c  and 3c  may be unequal 
since step 3 is an integer assignment, while step 2 is an assignment of array elements, which need not 
be integers.   
 
Let jt  denote the number of executions of the while loop test (line 4) on the jth iteration of the outer for 

loop 1-7.   Observe that the body of the while loop 4-6 executes 1−jt  times on the jth  iteration of loop 

1-7.  The total cost is then 
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We see that )(nT  depends on the numbers jt , which themselves depend on the particular permutation 

of the input array A.  We consider three measures of run time that take into account all possible 
arrangements of A, namely best case, worst case, and average case.   
 
In the best case, the array A is already sorted in increasing order, so that 1=jt  for nj ≤≤2 , and 
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)()()( 743274321 ccccncccccnT −−−−+++++= . 

 
Best case is unlikely to be of much practical interest however.  A more useful measure is worst case, 
which occurs when the array is initially sorted in decreasing order.  In this case jt j =  for nj ≤≤2 , 

and 1
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To determine the average case, we must make some assumption about the likelihood of each of the ! n  
distinct permutations of the input array.  In the absence of any other information, we assume that each 
arrangement of array A is equally likely as input.  This suggests that, on average, half the elements in 

)]1(1[ −jA L  are less than jA , and half are greater.  On average then, 2/jt j = , from which it follows 

that 
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We leave it as an exercise for the reader to verify all of the preceding algebraic calculations.  
Summarizing these results we have 
 

 )(nT  Asymptotic Growth Rate of )(nT  

Best Case ban+  )(nΘ  

Worst Case edncn ++2  )( 2nΘ  

Average Case hgnfn ++2  )( 2nΘ  
 
where the a-h depend on the constants 1c - 7c , which in turn depend on the particular computing device 

used.  Our goal is to define a measure of run time that is machine independent.  We will call this 
measure the asymptotic growth rate of )(nT .  Informally speaking, the asymptotic growth rate is a 
measure of how fast )(nT  increases or "scales up" with n.   
 
To make these ideas more concrete, consider four algorithms A, B, C, and D whose run times on inputs 
of size n are respectively 
 

 Run Time Asymptotic Growth Rate 
A 2n  )( 2nΘ  

B 210n  )( 2nΘ  

C 100210 2 ++ nn  )( 2nΘ  

D 100001000 +n  )(nΘ  
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We can see that D is superior for large n, and worst for small n.  Why can A, B, and C be classified as 
equivalent?  The lower order terms in C are negligible for large n, so there is no effective difference 
between B and C.  Algorithms A and B can be equalized by running B on a machine that is 10 times 
faster than the one running A, so we should not distinguish between them if we seek a machine 
independent measure of run time.  We will give precise definitions of these notions in due course, but 
in the mean time, observe that the asymptotic growth rate of )(nT  is obtained by dropping the low 
order terms in )(nT , and replacing the coefficient of the highest order term by 1.    
 
Returning to our analysis of Insertion Sort, since the constants a-h are not critical to the asymptotic 
growth rate, and likewise for 1c - 7c , we need make no effort to calculate them explicitly.  Instead we 

pick a representative basic operation (also called a barometer operation), and count the number of 
times that operation is executed on inputs of a fixed size n (in best, worst, and average cases.)  In 
sorting algorithms it is customary to take the comparison of array elements as basic operation.  This 
takes place on line 4 of Insertion Sort.   
 
Exercise:  Show that the numbers of array comparisons performed by Insertion sort on arrays of length 
n are, respectively: 

 Number of Comparisons Asymptotic Growth Rate 
Best Case 1−n  )(nΘ  

Worst Case 
2

)1( −nn
 )( 2nΘ  

Average Case 
4

)1( −nn
 )( 2nΘ  

 
Thus, as far as the asymptotic growth rate is concerned, we obtain the same results as in our earlier 
detailed analysis. 
 
Merge Sort is a sorting algorithm whose strategy is quite different from that of Insertion Sort.  It 
utilizes a technique called divide and conquer, which we describe here in general terms.  Given an 
instance of the problem to be solved, divide that instance into some number of subinstances of smaller 
size, solve the subinstances recursively, then combine the subproblem solutions so as to construct a 
solution to the original instance. 
 
                           Problem Instance:                                    I 
 
                                                                                       Divide 
                              Subinstances:            1I         2I       ……….……..       kI  

 
          Solutions to Subinstances:            1S        2S       …………..….       kS  

                                                                                     Combine 
 
          Solution to Original Instance:                                  S 
 
To say that the subinstances are solved recursively means that the same divide and conquer technique 
is applied to each of them, obtaining yet smaller instances of the problem.  This process eventually 
reaches a point where the size of the problem instance is so small, that the solution is trivial.   
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MergeSort(A, p, r) begins with an unsorted subarray ][ rpA LL , divides it into two subarrays of 
approximately equal length ][ qpA L  and ]1[ rqA L+  where rqp <≤ , sorts the two subarrays 
recursively, then combines the two sorted subarrays into a single sorted array ][ rpA LL .  The 
combine stage is performed by calling another algorithm called Merge(A, p, q, r). 
 
                                                                  ][ rpA LLLL    Unsorted 
 
 
                                              ][ qpA LL                              ]1[ rqA LL+  
 
 
                                                                  ][ rpA LLLL     Sorted 
 
Merge(A, p, q, r) requires as precondition that the subarrays ][ qpA L  and ]1[ rqA L+  are already 
sorted, and that rqp <≤ .  It copies each subarray into temporary spaces ][ qpT L  and ]1[ rqT L+ , 
then steps through the temporaries from left to right, comparing an element in ][ qpT L  to one in 

]1[ rqT L+ , then placing the smaller in its final position in ][ rpA LL . 
 
Exercise:  Write pseudo-code for the algorithm Merge(A, p, q, r), or just read it on page 29 of the text.  
Show that in worst case, Merge(A, p, q, r) performs pr −  array comparisons. 
 

MergeSort(A, p, r) 
1. if rp <  

2.       2/)( rpq +←  

3.      MergeSort(A, p, q) 
4.      MergeSort(A, 1+q , r) 
5.      Merge(A, p, q, r) 

 
If rp ≥  then ][ rpA LL  contains at most one element, and so is already sorted.  MergeSort() does 
nothing in this case.  If rp <  we calculate the index q approximately half way between p and r, then 
call MergeSort() on the two subarrays ][ qpA L  and ]1[ rqA L+ , then call Merge() to combine these 
into a single sorted subarray ][ rpA LL .  The top level call to MergeSort(A, 1, n) sorts the full array 

]1[ nA LL  of length n.   
 
Exercise:  Trace MergeSort(A, 1, 8) on )6 ,2 ,7 ,4 ,1 ,3 ,5 ,8(=A . 

Exercise:  Show that if 1=p , nr = , and  2/)1( nq += , then ][ qpA L  has length  2/n , and 

]1[ rqA L+  has length  2/n . 

 
We wish to determine the run time of MergeSort(A, 1, n) as a function of ][length An = .  Let )(nT  
denote the worst case number of comparisons performed by MergeSort() on arrays of length n.  
Observe that all array comparisons take place within the various calls to Merge(), and recall that 
Merge(A, p, q, r) performs pr −  array comparisons in worst case.  When 1=p  and nr =  this is 1−n  
comparisons.  Therefore )(nT  must satisfy the following recurrence relation. 
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If n happens to be an integer power of 2, this reduces to  
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The solution to this last recurrence is 1)lg()( +−= nnnnT , where )lg(n  denotes the base 2 logarithm 

of n.  We emphasis that this solution is only valid in the special case that kn 2=  for some Z∈k .   
 
Proof:             )1()2/(2Side HandRight −+= nnT  

                           ( ) )1(1)2/()2/lg()2/(2 −++−= nnnn  
                           12)2/lg( −++−= nnnn  
                           1)1)(lg( +−= nn  
                           1)lg( +−= nnn  
                           )(nT=  
                           Side HandLeft =                                                                           ///    

 
The highest order term in )(nT  is obviously )lg(nn , and hence the asymptotic growth rate of )(nT  is 

))lg(( nnΘ .  As we will soon see, the asymptotic solution ))lg(()( nnnT Θ=  is valid for all n, not just 

when kn 2= .  This analysis must remain somewhat vague until we define precisely what is meant by 
))lg(( nnΘ , )( 2nΘ , and more generally ))(( ngΘ  for any function )(ng .  In the mean time, we observe 

that 2n  grows much faster than )lg(nn .  We conclude that for large n, Merge Sort is a better algorithm 
than Insertion Sort, regardless of the machine implementation.  
 
Our treatment of Merge Sort has been typical of the way we will analyze recursive algorithms.  We let 

)(nT  denote the (best, worst, or average) case run time, or the number of barometer operations, on 

inputs of size n.  If n is sufficiently small, say 0nn <  for some positive constant 0n , then the problem is 

trivial, and no subdivisions are necessary.  In this case the solution runs in constant time: cnT =)( .  

This is the point at which the recursion “bottoms out”.  If 0nn ≥ , we divide the problem into a 

subproblems, each of size bn / , where 1≥a  and 1>b .  Suppose our algorithm takes time )(nD  to 
divide the original problem instance into subinstances, and time )(nC  to combine the solutions to 
these instances into a solutions to the original problem instance.  Then we obtain a recurrence relation 
for )(nT : 
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We will learn in Chapter 4 how to solve recurrence of this form, both explicitly, and in the asymptotic 
sense. 
 


