CMPS 101

Algorithms and Abstract Data Types

Introduction to Algorithm Analysis

Summary of the Theory Side of this Course
¢ Mathematical Preliminaries

0]
0]
0]
0]

Asymptotic growth rates of functions

Some common functions and their properties
Induction Proofs

Recurrences

e Standard ADTs

o

O O0OO0OO0Oo

o

Elementary Data Structures like Stacks, Queues, and Lists
Graphs and Directed Graphs

Priority Queues

Disjoint Sets

Binary Search Trees and Red-Black Trees

Dictionaries

Hash Tables

e Algorithms Associated with these ADTs

0]
0]

(0]

Sorting and Searching

Breadth First Search, Depth First Search, ShorteghsP Minimum Weight
Spanning Trees

Insertion and Deletion in Balanced Trees

e Run Time Analysis of these Algorithms

Some Sorting Algorithms
A classic problem in Computer Science is that of sgpréncollection of objects in increasing order.
We assume for the moment that the objects to bedsare stored in an arréyof fixed lengthn.

A=A A AL A)

Our convention is that array indices range from h#olengtH A] (not O ton—1, as in many computer
languages). We denote the subarray with indicegimg fromi toj by Ali--- j]=(A,...,A). Ifi>]

this is understood to denote the empty array,arearray of length 0. We begin by analyzing two
algorithms that solve this probletmsertion Sort andMerge Sort.

InsertionSortd)

1)for j«2 ton

2) temp— A

3) i« j-1

4.) while i>0 and temp A
5) A+l A A

6.) i«i-1

7.) A, «temp

If this notation is not absolutely clear, read gsudo-code conventions outlined on pages 19-20 of
the text. In particular, notice that the left avrb<—" stands for the assignment operator, and that loop
bodies and conditional branches are indicatedysbleindentation, not by braces or other punctumatio
characters. Also there are no semicolons, parsisther brackets, and local variables need not be
declared before use.

Notice that on thq’ath iteration of loop 2-7, the subarrad{l---(j— 1 already sorted, whilé&{ j---n]
is unsorted. Steps 3-7 have the effect of insgrén into its correct position inAll---(j— 1)]thus
expanding the sorted section by exactly 1.

Exercise: Trace InsertionSo#{) on A= (8,5314,7,2,6)

We wish to determine theun time T(n) of this algorithm as a function of the input size This
analysis should be, as far as possible, indeperafetite computing machine that is executing the
algorithm. Letc, denote the cost of stdp We remain uncommitted as to just what units \@me

what quantityc, measures. This could be processor time in secongswer consumed in watts, or

even some appropriate monetary unit. As we slea| details of this kind are not critical to the
analysis. Thus for instance, and c, represent the costs of assignment operationsgwhiand c,

are the costs of performing tests of loop repetitonditions. Notice that, and c, may be unequal

since step 3 is an integer assignment, while stspa assignment of array elements, which need not
be integers.

Let t; denote the number of executions of the while I (line 4) on th@" iteration of the outer for

loop 1-7. Observe that the body of the while ldef executes; —1 times on th¢™" iteration of loop
1-7. The total cost is then

T(n) :c1n+cz(n—1)+03(n—1)+c4Zn:tj +%i(tj —1)+C6Zn:(tj -D+c,(n-1)

:(04JrcsJrc,é)(ZtJ}Jr(clJrczJrca—cf,—c,a+c7)n+(—cz—c3+c5 +Cs—C,)

i=2

We see thall (n Yepends on the numbetrs which themselves depend on the particular pertiouta

of the input arrayA. We consider three measures of run time that taidae account all possible
arrangements @&, namelybest case, worst case, andaverage case.

In the best case, the arrayis already sorted in increasing order, so thatl for 2<j<n, and

n
th =n-1, whence
=2

T(n)=(c,+c,+c,+C,+C,)n+(-C,—C;—C, —C,).

Best case is unlikely to be of much practical iesthowever. A more useful measure is worst case,
which occurs when the array is initially sorteddecreasing order. In this case=j for 2<j<n,

andZt n(n+1) —1, and therefore

2

1
—506 +c7jn+(—c2 -C;,—C,—C,).

1 1 1) 1 1
T(n)= §c4+§cs +—=Cs [N°+ c1+cz+ca+§c4—zc5
To determine the average case, we must make s@umpson about the likelihood of each of the
distinct permutations of the input array. In thesence of any other information, we assume thdt eac
arrangement of arra is equally likely as input. This suggests that,awverage, half the elements in
AlL--(j-1)] are less tharA,, and half are greater. On average thes; j /2, from which it follows

thatZt __[n(n+1) j and hence

T(n)—(lc FEPE R)n*+(c +c,+C 3o 3c 4)n+(-c,—c T T P)
- 4 4 4C"5 4 6 Cl 2 3 4C"5 4 6 C7 2 3 2 4 2C"5 2 6 C7 :

We leave it as an exercise for the reader to vealfyof the preceding algebraic calculations.
Summarizing these results we have

T(n) Asymptotic Growth Rate of (n)
Best Case an+b O(n)
Worst Case cn®+dn+e 0(n?)
Average Case| fn”+gn+h o(n?)

where thea-h depend on the constants-c,, which in turn depend on the particular computegice

used. Our goal is to define a measure of run tina& is machine independent. We will call this
measure theasymptotic growth rate of T(n). Informally speaking, the asymptotic growth régtea

measure of how fasi(n increases or "scales up" with

To make these ideas more concrete, consider fgariims A, B, C, and D whose run times on inputs
of sizen are respectively

Run Time Asymptotic Growth Rate
A n? o(n?)
B 10n? e(n®)
C | 10n*+2n+100 e(n®)
D | 100(h+10000 O(n)

We can see that D is superior for largeand worst for smah. Why can A, B, and C be classified as
equivalent? The lower order terms in C are negligfor largen, so there is no effective difference
between B and C. Algorithms A and B can be egedlizy running B on a machine that is 10 times
faster than the one running A, so we should natingigsish between them if we seek a machine
independent measure of run time. We will give medefinitions of these notions in due course, but
in the mean time, observe that the asymptotic drawate of T(n) is obtained by dropping the low

order terms inT (n) and replacing the coefficient of the highest otdem by 1.

Returning to our analysis of Insertion Sort, sitiee constantg-h are not critical to the asymptotic
growth rate, and likewise foc, -c,, we need make no effort to calculate them expficitnstead we

pick a representativbasic operation (also called @arometer operation), and count the number of
times that operation is executed on inputs of adisizen (in best, worst, and average cases.) In
sorting algorithms it is customary to take the cangon of array elements as basic operation. This
takes place on line 4 of Insertion Sort.

Exercise: Show that the numbers of array comparisons paddrby Insertion sort on arrays of length
n are, respectively:

Number of Comparison$ Asymptotic Growth Rate
Best Case n-1 O(n)
-1
Worst Case % e(n?)
-1
Average Case % 0(n%)

Thus, as far as the asymptotic growth rate is ameck we obtain the same results as in our earlier
detailed analysis.

Merge Sort is a sorting algorithm whose strategyuge different from that of Insertion Sort. It
utilizes a technique calledivide and conquer, which we describe here in general terms. Given a
instance of the problem to be solved, divide thataince into some number of subinstances of smaller
size, solve the subinstances recursively, then gwmine subproblem solutions so as to construct a
solution to the original instance.

Problem Instance: [

%m

Subinstances: |, L, I
Solutions to Subinstances: S S, S
W
Solution to Original Instance: S

To say that the subinstances are solved recursmedns that the same divide and conquer technique
is applied to each of them, obtaining yet smalhstances of the problem. This process eventually
reaches a point where the size of the problemnustég so small, that the solution is trivial.

4

MergeSort@, p, r) begins with an unsorted subarr&yp------ r , divides it into two subarrays of
approximately equal lengttN p---qg &nd Aqg+1--r] where p<qg<r, sorts the two subarrays
recursively, then combines the two sorted subarmats a single sorted arra@ p------ r.] The
combine stage is performed by calling another &lgorcalled Merge4, p, g, r).

A[p r] Unsorted

A[p r] Sorted

Merge@, p, g, r) requires as precondition that the subarr@&yp---q andl Aq+1--r | are already
sorted, and thap<qg<r . It copies each subarray into temporary spadgs--q andT[q+1--r],
then steps through the temporaries from left thitrigomparing an element in[p---q tp one in
T[g+21--r], then placing the smaller in its final positionAfip------ r].

Exercise: Write pseudo-code for the algorithm Merdgg, g, r), or just read it on page 29 of the text.
Show that in worst case, MerdeQ, q, r) performsr — p array comparisons.

MergeSortA, p, 1)

1. if p<r

2. q«l(p+r)/2]
MergeSori4, p, Q)
MergeSorig, q+1,r)
MergeA, p, q,)

o ko

If p>r then Ap----- r] contains at most one element, and so is alreadgdso MergeSort() does
nothing in this case. Ip<r we calculate the index approximately half way betwegnandr, then
call MergeSort() on the two subarray$p---q amnd Ag+21--r], then call Merge() to combine these
into a single sorted subarradf p------ r . JThe top level call to MergeSo#(1, n) sorts the full array
Al n] of lengthn.

Exercise: Trace MergeSo, 1, 8) onA= (8,5314,7,2,6)
Exercise. Show that if p= 1 r=n, and q=| (1+n)/2], then Ap---q] has length[n/2], and
Ag+1--r] has lengthn/2].

We wish to determine the run time of MergeS&rt{, n) as a function oin=lengtHA] Let T(n)

denote the worst case number of comparisons pestbroy MergeSort() on arrays of length
Observe that all array comparisons take place mithe various calls to Merge(), and recall that
Merge(@, p, g, r) performsr — p array comparisons in worst case. Wheg antlr =n thisisn-1

comparisons. ThereforB(n nhust satisfy the following recurrence relation.

5

0 n=1
T(n):{T((n/21)+T(_n/2J)+(n—1) n>2

If n happens to be an integer power of 2, this rediaces

0 n=1

T(n)z{ZT(n/Z)+(n—1) n>2

The solution to this last recurrenceTign) = nlg(n)—n+ , vtherelg(n)denotes the base 2 logarithm
of n. We emphasis that this solution is only validhia special case that= 2" for somek e Z .

Proof: Right HandSide= 2T (n/2) + (n—-1)
=2((n/2)lg(n/2)—(n/2)+1)+(n-1)
=nlg(n/2)-n+2+n- 1
=n(lg(n)-H+ 1
=nlg(n)—n+ 1
=T(n)
= Left HandSide 111

The highest order term ii(n i% obviouslynlg(n), and hence the asymptotic growth rate¢n is)
®(nlg(n)). As we will soon see, the asymptotic solutibfn) =®(nlg(n ig)valid for alln, not just
when n=2%. This analysis must remain somewhat vague umtitefine precisely what is meant by
O(nlg(n)), ®(n*), and more generall®(g(n)or any functiorg(n) In the mean time, we observe
that n> grows much faster thanig(n .)We conclude that for large Merge Sort is a better algorithm
than Insertion Sort, regardless of the machineempghtation.

Our treatment of Merge Sort has been typical ofwhg we will analyze recursive algorithms. We let
T(n) denote the (best, worst, or average) case run tmée number of barometer operations, on

inputs of sizen. If nis sufficiently small, sayr < n, for some positive constami, then the problem is
trivial, and no subdivisions are necessary. Is ttase the solution runs in constant tinién) =c.
This is the point at which the recursion “bottomst”’o If n>n,, we divide the problem inta
subproblems, each of siz&/b, wherea>1 andb>1. Suppose our algorithm takes tinig§n tog
divide the original problem instance into subins&s) and timeC(n)}to combine the solutions to

these instances into a solutions to the originablem instance. Then we obtain a recurrence oglati
for T(n):

T(n = c n=1
(W= aT(n/b)+ D(n)+C(n) n>2

We will learn in Chapter 4 how to solve recurrené¢his form, both explicitly, and in the asymptoti
sense.

