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CMPS 101 
Algorithms and Abstract Data Types 
 
 

Induction Proofs 
 
Let )(nP  be a propositional function, i.e. P is a function whose domain is (some subset of) the set of 
integers and whose codomain is the set {True, False}.  Informally, this means )(nP  is a sentence, 
statement, or assertion whose truth or falsity depends on the integer n.  Mathematical Induction is a proof 
technique which can be used to prove statements of the form )(:0 nPnn ≥∀  (“for all n greater than or 

equal to 0n , )(nP is true”), where 0n  is a fixed integer.  A proof by Mathematical Induction contains two 
steps: 
 
I. Base Step:  Prove directly that the proposition )( 0nP  is true. 

IIa. Induction Step:  Prove  ))1()((:0 +→≥∀ nPnPnn . 

To do this pick an arbitrary 0nn ≥ , and assume for this n that )(nP  is true.  Then show as a 

consequence that )1( +nP  is true.  The statement )(nP  is often called the induction hypothesis,  
since it is what is assumed in the induction step. 

 
When I and II are complete we conclude that )(nP  is true for all 0nn ≥ .  Induction is sometimes 
explained in terms of a domino analogy.  Consider an infinite set of dominos which are lined up and ready 
to fall.  Each domino is labeled by a positive integer, starting with 0n .  (It is often the case that 10 =n , 

which we assume here for the sake of definiteness).  Let )(nP  be the assertion: “the nth domino falls”.  
First prove )1(P , i.e. “the first domino falls”, then prove ))1()((: 1 +→≥∀ nPnPn  which says “if any 
particular domino falls, then the next domino must also fall”.  When this is done we may conclude 

)(:1 nPn ≥∀ , “all dominos fall”.  There are a number of variations on the induction step.  The first is just 
a reparametrization of IIa. 
 
IIb. Induction Step:  Prove  ))()1((:0 nPnPnn →−>∀  

Let 0nn > , assume )1( −nP  is true, then prove )(nP  is true. 
 
Forms IIa and IIb are said to be based on the first principle of mathematical induction.  The validity of 
this principle is proved in the appendix of this handout.  Another important variation is called the second 
principle of mathematical induction, or strong induction. 
 
IIc. Induction Step:  Prove  ))1())( :((:0 +→≤∀≥∀ nPkPnknn  

Let 0nn ≥ , assume for all k in the range nkn ≤≤0  that )(kP  is true.  Then prove as a 

consequence that )1( +nP  is true.  In this case the term induction hypothesis refers to the stronger 
assumption: )( : kPnk ≤∀ .  

 
The strong induction form is often reparametrized as in IIb:  
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IId. Induction Step:  Prove  ))())(:((:0 nPkPnknn →<∀>∀  

Let 0nn > , assume for all k in the range nkn <≤0 , that )(kP  is true, then prove as a 

consequence that )(nP  is true.  In this case the induction hypothesis is )( : kPnk <∀ . 
 
In terms of the Domino analogy, the strong induction form IId says we must show: (I) the first domino 
falls, and (II) for any n, if all dominos up to but not including the thn  domino fall, then the  thn  domino 
falls.  From (I) and (II) we may conclude that all dominos fall.  Strong Induction is most often 
parameterized as in IId, and form IIc is uncommon.  We present here a number of examples of IIa, IIb, 
and IId. 
 
Example 1    Prove that for all 1≥n : 
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Proof: 
Let )(nP  be the boxed equation above.  We begin the induction at 10 =n . 

I. Base step   Clearly  
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i  , showing that )1(P  is true. 

IIa. Induction Step   Let 1≥n  and assume )(nP  is true.  That is, for this particular value of n, the 
boxed equation holds.  Then 
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showing that )1( +nP  is true.   
We conclude that )(nP  is true for all 1≥n .                                                                                          /// 
 
When writing an induction proof, always state the induction hypothesis explicitly.  Also make note of the 
point in the proof where the induction hypothesis is used. 
 
Example 2    Let Rx∈  and 1≠x .  Show that for all 0≥n : 
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Proof: 
Here we will use form IIb.  Again let )(nP  be the boxed equation.  We begin the induction at 00 =n . 

I. Base step   
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  , showing that )1(P  is true. 
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IIb. Induction Step   Let 0>n  and assume that )1( −nP  is true, i.e. assume for this particular n that:   
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showing that )(nP  is true. 
Steps I and II prove that )(nP  holds for all 0≥n .                                                                                   /// 
 

Exercise 1    Prove that for all 1≥n :  
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.  Do this using both forms IIa and IIb.  Also 

prove that  
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  for all 1≥n . 

 
Often the proposition to be proved is not a formula, but some other type of assertion, like an inequality, as 
in the following example. 
 
Example 3  Define the function )(nT  for +∈ Zn  by the recurrence 
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Prove that for all 1≥n ,  )lg()( nnT ≤  , and therefore )(lg)( nOnT = . 
 
Proof: 
Let )(nP  be the boxed inequality above. 
I.         Base Step 

The inequality  )1lg()1( ≤T  reduces to simply 00≤ , which is obviously true, so )1(P  holds. 
 
IId.     Induction Step (Strong Induction) 

Let 1>n  and assume for all k in the range nk <≤1  that )(kP  is true, i.e. )lg()( kkT ≤ .  In 

particular when  2/nk = , we have  ( )  2/lg2/ nnT ≤ .  Therefore 

 

 ( ) 12/)( += nTnT                         (by the definition of )(nT ) 

           12/lg +≤ n                          (by the induction hypothesis) 

         1)2/lg( +≤ n                          (since   xx ≤  for any x) 

         1)2lg()lg( +−= n  
         )lg(n= , 

showing that )(nP  is true. 
Therefore )lg()( nnT ≤  for all 1≥n , as claimed.                                                                                  /// 
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Exercise 2   Define )(nS  for +∈ Zn  by the recurrence 
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Prove that for all 1≥n :  )lg()( nnS ≥ , and hence )(lg)( nnS Ω= . 
 
There are many other variations on the induction technique.  Occasionally double induction is called for, 
which involves a modification of both the base and induction steps.   
 
Base Step:  Prove )( 0nP  and )1( 0 +nP . 

Induction Step:  Prove  ))()1()2((:)2( 0 nPnPnPnn →−∧−+≥∀ . 

 
When these steps are complete, we conclude )(:0 nPnn ≥∀ .  In terms of our domino analogy, we prove:  

(I) the first two dominos fall, and (II) if any two consecutive dominos fall, then the very next domino 
falls, and from (I) and (II) we deduce that all dominos fall.  The next example uses double induction and 
concerns the Fibonacci sequence nF  defined by: 00 =F , 11 =F , and 21 −− += nnn FFF ,  i.e. each term in the 

sequence is the sum of the preceding two.  Using this recurrence formula, the first few terms of the 
Fibonacci sequence are easily computed: 00 =F , 11 =F , 12 =F , 23 =F , 34 =F , 55 =F , etc. 

 

Example 4   Let 
2
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Proof:    
Let )(nP  denote the boxed equation above. 

I. Base Step  Observe that )0(P  and )1(P  are true since [ ] 0
00 0
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1
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II. Induction Step   Let 2≥n  and assume that both )2( −nP  and )1( −nP  are true, i.e. we assume  
for this n that 
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The induction hypothesis yields  
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One checks that a and b are roots of the quadratic equation 012 =−− xx , whence 12 += aa , and 
12 += bb .  Therefore 
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showing that )(nP  is true.   

Together (I) and (II) imply that [ ]nn
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 for all 0≥n .                                                       /// 
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Exercise 3   Let nF  be the Fibonacci sequence and define a as above.  Show that 2−≥ n
n aF  for all 2≥n , 

and hence )( n
n aF Ω= .  (Prove this by double induction, not as a consequence of the last example.) 

 
A Short Introduction to Graphs  
Often the propositional function )(nP  is some assertion concerning other types of mathematical 
structures, such as graphs, or trees.  A graph G is a pair of sets ),( EVG = .  The elements of ∅≠V  are 
called vertices, and the elements of E are called edges.  Each edge joins two distinct vertices, called it’s 
ends, and no two edges have the same ends.  Abstractly, an edge is an unordered pair of vertices, i.e. a 2-
element subset of V.  Two vertices that are joined by an edge are said to be adjacent, and an edge is said 
to be incident with it’s two end vertices.  Two edges are said to be adjacent if they are incident with a 
common end vertex.  Thus in the example below: vertex 1 is adjacent to vertex 4, vertex 2 is incident with 
edge 26, and edge 45 is adjacent to edge 53. 
                                                           1                  2                  3 
 
 
 
 
 
                                                           4                  5                  6 
                               V= {1, 2, 3, 4, 5, 6}     E= {12, 14, 23, 24, 25, 26, 35, 36, 45, 56} 
 
Let Vyx ∈, .  An x-y path in G is a sequence of vertices starting with x and ending with y, in which each 
consecutive pair of vertices are adjacent.  We require that all vertices other than x and y be distinct, and 
that each edge in the sequence be traversed at most once.  We call x the initial vertex and y the terminal 
vertex.  If yx = , then the path is called a cycle.  The length of a path is the number of edges traversed by 
the sequence.  In the above example we have: 
 

A 1-6 path of length 5:   1, 2, 4, 5, 3, 6 
A 1-6 path of length 3:   1, 4, 5, 6 
Another 1-6 path of length 3:   1, 2, 3, 6 
A cycle of length 6:   1, 2, 6, 3, 5, 4, 1 
A cycle of length 3:   6, 2, 5, 6 

 
A graph is said to be connected if it contains an x-y path for every Vyx ∈, , otherwise it is called 
disconnected.  The example above is clearly connected, while the following example is disconnected. 
 
                                                 1                 2                  3                   4 
 
 
 
 
 
                                                 5                 6         7                  8        9 
                       V= {1, 2, 3, 4, 5, 6, 7, 8, 9}     E= {12, 15, 25, 26, 56, 37, 38, 78, 49} 
 
A subgraph of a graph G is a graph H in which )()( GVHV ⊆ , and )()( GEHE ⊆ .  In the above example 
({1, 2, 5}, {12, 15, 25}) is a connected subgraph, while ({2, 3, 6, 7}, {26, 37}) is a disconnected 
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subgraph.  A subgraph H is called a connected component of G if it is (i) connected, and (ii) maximal with 
respect to property (i), i.e. any other subgraph of G that contains H is disconnected.  The above example 
clearly has three connected components:  ({1, 2, 5, 6}, {12, 15, 25, 26, 56}), ({3, 7, 8}, {37, 38, 78}), and 
({4, 9}, {49}).  Obviously a graph is connected if and only if it has exactly one connected component. 
 
A graph G is called acyclic if it contains no cycles.  A tree is a graph that is both connected and acyclic.  
The connected components of an acyclic graph are obviously trees.  For this reason an acyclic graph is 
sometimes called a forest.  The following graph is a forest with three connected components.   
 
 
 
 
 
 
 
 
 
 
 
Observe that the number of edges in each tree of this forest is one less than the number of vertices.  This 
is true for all trees, as we now show. 
 
Example 5    For all 1≥n ,  if T is a tree on n vertices, then T contains 1−n  edges.     
 
Proof: 
Let )(nP be the boxed statement above.  We begin at 10 =n , and use the strong induction form IId. 

 
I. Base step 

If T has just one vertex, then it can have no edges, since in the definition of a graph, each edge 
must have distinct end vertices.  Therefore )1(P  holds. 

IId. Induction Step  
Let 1>n  and assume for all k in the range nk <≤1 , that )(kP  is true, i.e. for any such k, all trees 
on k vertices contain 1−k  edges.  Now let T be a tree on n vertices, pick any edge e in T, and 
remove it.  The removal of e splits T into two subtrees, each having fewer than n vertices.  (This 
follows from some elementary facts about graphs which we omit for the sake of brevity.)  Suppose 
for the sake of definiteness that the two subtrees have 1k  and 2k  vertices, respectively.  Since no 

vertices were removed, we must have nkk =+ 21 .  By our inductive hypothesis, these two subtrees 

have 11 −k  and 12 −k  edges, respectively.  Upon replacing the edge e, we see that the number of 

edges originally in T must have been 111)1()1( 2121 −=−+=+−+− nkkkk , as required. 
 
By the second principle of mathematical induction, all trees on n vertices have 1−n  edges.                 /// 
 
Induction Fallacies 
The next three examples illustrate some pitfalls to be avoided when constructing induction proofs.  The 
result in Example A was proved correctly in Example 5.  Here we give an invalid proof of the same fact 
that illustrates an argument which some authors have called “the induction trap”. 
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Example A   For all 1≥n , if T is a tree on n vertices then T has 1−n  edges. 
 
Proof:  (Invalid) 
Base Step:  If 1=n  then T has no edges, since each edge must have distinct end vertices. 
Induction Step:  Let 1≥n  and let T be a tree on n vertices.  Assume that T has 1−n  edges.  Add a new 
vertex and join it to T with a new edge.  To be precise, the new edge has the new vertex at one end, and 
the other end can be any existing vertex in T.  The resulting graph has 1+n  vertices and n edges, and is 
clearly a tree since connectedness is maintained and no cycles were created.  By the principle of 
mathematical induction, all trees on n vertices have 1−n  edges.   
 
First note that the base step is identical to that in Example 5, and is correct.  For the induction step, the 
argument attempts to follow IIa, but fails to do so.  In this example )(nP  is of the form )()( nBnA →  
where )(nA  is the statement “T is a tree on n vertices”, and )(nB  is “T has 1−n  edges”.  The induction 
step should therefore be to prove, for all 1≥n , that )1()( +→ nPnP , i.e. 
 

))1()1(())()(( +→+→→ nBnAnBnA . 
 
To prove this, we should assume )()( nBnA → , then assume )1( +nA , then show as a consequence that 

)1( +nB is true.  In other words we should: 

• Assume all trees on n vertices have 1−n  edges 
• Assume T has 1+n  vertices 
• Show as a consequence that T has n edges 

The argument did not follow this format however.  Instead it does the following. 
• Assume T has n vertices 
• Assume T has 1−n  edges 
• Construct a new tree from T having 1+n  vertices and n edges 

Therefore the argument was not a proof by induction.  Some students would nevertheless hold that the 
argument is still valid, even though it is not a true induction proof.  The next example shows convincingly 
that it cannot be valid.   
 
Example B   For all 1≥n , if G is a connected graph on n vertices, then G has 1−n  edges. (False!) 
 
We notice right away that the above statement is false, since the graph below provides an elementary 
counter-example.  But consider the following “proof” in light of Example A. 
 
 
 
 
 
Proof:  (Invalid) 
Base Step:  If 1=n  then G has no edges, since each edge must have distinct end vertices. 
Induction Step:  Let 1≥n  and let G be a connected graph on n vertices.  Assume that G has 1−n  edges.  
Add a new vertex and join it to G with a new edge.  The resulting graph has 1+n  vertices and n edges, 
and is clearly connected.  By the principle of mathematical induction, all connected graphs on n vertices 
have 1−n  edges. 
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Observe that Example B follows the format of Example A exactly.  Thus if A is valid, so must B be valid.  
But the assertion “proved” in B is false!  Therefore B cannot be a valid argument, and so neither is A.   
 
Example C   All horses are of the same color. 
 
Proof: (Invalid) 
We prove that for all 1≥n :  if S is a set of n horses, then all horses in S have the same color.   The result 
follows on letting S be the set of all horses.  Let )(nP  be the boxed statement, and proceed by induction 
on n. 
 
Base Step:  Let 1=n .  Obviously if S is a set consisting of just one horse, then all horses in S must have 
the same color.  Thus )1(P  is true. 
Induction Step:  Let 1>n  and assume that in any set of n horses, all horses are of the same color.  Let S 
be a set of 1+n  horses, say { }1321 ,,,, += nhhhhS K .  Then the sets 

 
}{},,,{ 1132 hShhhS n −==′ +K  

and 
}{},,,{ 2131 hShhhS n −==′′ +K  

 
each contain exactly n horses, and so by the induction hypothesis all horses in S ′  are of one color, and 
likewise for S ′′ .  Observe that SSh ′′∩′∈3  and that 3h  can have only one color.  Therefore the color of 

the horses in S ′  is identical to that of the horses in S ′′ .  (Note 31    2    1 ≥+⇒≥⇒> nnn , so there is in 
fact a third horse, and he can have only one color.)  Since SSS ′′∪′=  it follows that all horses in S are of 
the same color.  Thus )1( +nP  is true, showing that )1()( +→ nPnP  for all 1>n .  The result now 
follows by induction. 
 
Obviously the proposition being proved is false, so there is something wrong with the proof, but what?  
The base step is certainly correct, and the induction step, as stated, is also correct.  The problem is that the 
induction step was not quantified properly.  We should have proved )1()(:1 +→≥∀ nPnPn   Instead we 
proved (correctly) that )1()(:1 +→>∀ nPnPn .  Indeed it is true that )3()2( PP → , )4()3( PP → , and 

)5()4( PP → , etc., but we never proved (and it is false that) )2()1( PP → .  In terms of the domino 
analogy, it is as if the first domino falls; and if any domino indexed 2 or above were to fall, then the next 
domino would fall; but the first domino is not sufficient to topple the second domino, and hence no 
domino other than the first actually falls. 
 
 
Justification of the Induction Principles 
Here we prove the validity of the first and second principles of mathematical induction.  Both proofs are 
based on the well ordering property of the positive integers +Z , which says:  Any non-empty set of 
positive integers contains a least element.  We assume this property without proof. 
 
 
Theorem 1 (weak induction form IIb) 
For any propositional function )(nP  defined on the positive integers, the following sentence is true:  
 

( )[ ] )(:1)()1(:1)1( nPnnPnPnP ≥∀→→−>∀∧  
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Proof: 
Assume that )1(P  and )()1(:1 nPnPn →−>∀  are both true.  Let } false  is  )(  | { nPZnS +∈= .  It is 
sufficient to show that ∅=S , since then )(nP  is true for all 1≥n .  Assume, to get a contradiction, that 

∅≠S .  Then, by the well ordering property of +Z , S contains a least element, call it m.  Since )1(P  is 
true, we have S∉1 .  Therefore 1>m , and 1−m  is a positive integer.  Since m is the smallest element in 
S, we must have Sm ∉−1 , whence )1( −mP  is true.  We have assumed for all 1>n  that )()1( nPnP →−  
is true.  In particular for mn = , we have )()1( mPmP →− .  Since both )1( −mP  and )()1( mPmP →−  
are true, we must conclude that )(mP  is also true.  Thus Sm∉ , contradicting the very definition of m as 
the smallest element in S.  Thus our assumption was false, and hence ∅=S  as required.                    ///   
 
Theorem 2 (strong induction form IId)  
For any propositional function )(nP  defined on the positive integers, the following sentence is true: 
 

( )( )[ ] )(:1)()(::1)1( nPnnPkPnknP ≥∀→→<∀>∀∧  
 
Proof: 
Assume )1(P  and ( ) )()(::1 nPkPnkn →<∀>∀  are true, and again let } false  is  )(  | { nPZnS +∈= .  As 
before we show ∅=S , hence )(nP  is true for all 1≥n .  Assume that ∅≠S .  By the well ordering 
property, S contains a least element m.  Since )1(P  is true, we have S∉1 .  Therefore 1>m , and 11≥−m .  
Since m is the smallest element in S, we have for any k in the range 11 −≤≤ mk  that Sk∉ , whence 

)(kP  is true.  In other words, )(: kPmk <∀  is true.  Now we have also assumed for all 1>n , that 

( ) )()(: nPkPnk →<∀  is true.  In particular, when mn = , we have ( ) )()(: mPkPmk →<∀ .  Since both  

)(: kPmk <∀  and ( ) )()(: mPkPmk →<∀  are true, we conclude )(mP  is also true.  Thus Sm∉ , again 
contradicting the definition of m as the smallest element in S.  Our assumption was therefore false, and 
hence ∅=S  as required.                                                                                                                       ///   
 
Although we proved both theorems independently, it is possible to show that each implies the other, i.e. 
theorems 1 and 2 are logically equivalent (exercise).  In fact both theorems are equivalent to the well 
ordering property of the positive integers (exercise.)  The terms “strong” and “weak” induction are 
therefore in some sense misnomers, since neither theorem is really stronger than the other.  The term 
“strong induction” refers instead to the stronger assumption being made in the induction step: 

)(: kPnk <∀  as opposed to )1( −nP . 
 


