CMPS 101
Algorithmsand Abstract Data Types

I nduction Proofs

Let P(n) be a propositional function, i.® is a function whose domain is (some subset of)stteof
integers and whose codomain is the set {True, Faldaformally, this meansP(n )is a sentence,
statement, or assertion whose truth or falsity ddpen the integar. Mathematical Induction is a proof
technique which can be used to prove statementiseoform Vn>n,:P(n) (“for all n greater than or

equal ton,, P(n)is true”), wheren, is a fixed integer. A proof by Mathematical Intioa contains two
steps:

l. Base Step: Prove directly that the propositid?(n, i9 true.

lla. Induction Step: Prove Vn=n, :(P(n) - P(n+ 1))
To do this pick an arbitraryy>n,, and assume for this that P(n) is true. Then show as a
consequence tha®(n+ 1 true. The statemer®(n i3 often called thenduction hypothesis,
since it is what is assumed in the induction step.

When | and Il are complete we conclude tin is)true for alln>n,. Induction is sometimes

explained in terms of a domino analogy. Consigeinéinite set of dominos which are lined up anddy
to fall. Each domino is labeled by a positive geg starting withn,. (It is often the case that, = , 1
which we assume here for the sake of definiteneks}. P(n) be the assertion: “theth domino falls”.
First prove P (1) i.e. “the first domino falls”, then proven>1:(P(n) > P(n+ 2¥hich says “if any

particular domino falls, then the next domino malsto fall’. When this is done we may conclude
vn>1:P(n), “all dominos fall’. There are a number of vaieais on the induction step. The first is just

a reparametrization of lla.

IIb.  Induction Step: Prove Vn>n,:(P(n-1) — P(n))
Let n>n,, assumeP(n— 1)s true, then prové>(n s true.

Formslla andlIb are said to be based on finest principle of mathematical induction. The validity of
this principle is proved in the appendix of thi:itlaut. Another important variation is called sseond
principle of mathematical induction, or strong induction.

llc.  Induction Step: Prove Vn=n, :((Vk <n:P(k)) - P(n+ 1)
Let n>n,, assume for alk in the rangen, <k<n that P(k) is true. Then prove as a
consequence th@®(n+ 13 true. In this case the ternduction hypothesis refers to the stronger
assumptionvk <n:P(k )

The strong induction form is often reparametrizedndl b:



lld. Induction Step: Prove ¥n>n,:((Vk <n:P(k)) > P(n))
Let n>n,, assume for alk in the rangen, <k<n, that P(k) is true, then prove as a
consequence th&(n i3 true. In this case theduction hypothesisis Vk < n:P(k).

In terms of the Domino analogy, the strong inductiorm Ild says we must show: (1) the first domino
falls, and (Il) for anyn, if all dominos up to but not including th&" domino fall, then then™ domino
falls. From (I) and (Il) we may conclude that dibminos fall. Strong Induction is most often
parameterized as in lld, and form llc is uncommate present here a number of examples of lla, llb,
and Iid.

Examplel Prove that for alh>1:

s 2 _ n(n+1)(2n+1)
= 6

Proof:
Let P(n) be the boxed equation above. We begin the inoluetin, = 1

l . . .
I Basestep Clearly Y i? _1-1 (1+1)6(2 1+
i=1
lla.  Induction Step Let n>1 and assumé(n is true. That is, for this particular valuempfthe
boxed equation holds. Then

n+1

Z i? = z i + (n+1)?

, showing thatP (1)is true.

_ N(n+ 1)6(2””) + (n+D?  (bythe induction hypothesis)
_ n(n+1)(2n+1) +6(n+1)?

6
_ (n+1)-[(n+1)gl]-[2(n+1)+1] (by some algebra)

showing thatP(n+ 1)is true.
We conclude thaP(n Js true for alln>1. 111

When writing an induction proof, always state theuction hypothesis explicitly. Also make notetlod
point in the proof where the induction hypothesisised.

Example2 Let xe R andx=1. Show that for alh > O:

n i Xn+l _1
2 X =
i=0 x-1
Proof:
Here we will use form Ilb. Again leP(n Be the boxed equation. We begin the induction,at 0.
0 . pa—
l. Base step z x' = x° :1:X—i , showing thatP (1)is true.
i=0 X—



[Ib. Induction Step Let n>0 and assume th&(n— 13 true, i.e. assume for this particutethat:

1 n_
z x =X 1. Then
- -1

i=0 i=0
= _11 + X" (by the induction hypothesis)
n+l
= XX 11 (by some algebra)
showing thatP(n )is true.
Steps | and Il prove th&(n holds for alln> 0. Iy

n 2
Exercisel Prove that for alh>1: ZiS :[@j . Do this using both formda and llb. Also
i=1
n 2 B
prove that Y i* = n(n+1)(2n+?1)2(3n +3n-1)
i=1

for all n>1.

Often the proposition to be proved is not a formbla some other type of assertion, like an inagyals
in the following example.

Example 3 Define the functionl (n )for ne Z* by the recurrence
0 if n=1
T(n):{T(\_n/ZJ)+1 if n>2

Prove that for alin>1,| T (n) <Ig(n){, and thereford (n) =O(lgn .)

Proof:
Let P(n) be the boxed inequality above.

l. Base Step
The inequality T (1) <lg( Dreduces to simplY) <0, which is obviously true, s® (Dolds.

IId. Induction Step (Strong Induction)
Let n>1 and assume for ak in the rangel<k<n that P(k) is true, i.,e.T(k)<Ig(k ) In

particular wherk =|n/2], we haveT (n/2))<Ig|n/2|. Therefore

T(n)=T(n/2])+1 (by the definition @f(n ) )
<lg|n/2]+1 (by the induction hypotisgs
<lg(n/2)+ 1 (sinckx | < x for anyx)
=Ilg(n)-lg(2)+ 1
=lg(n),

showing thatP(n )is true.
ThereforeT (n) <Ig(n )for all n>1, as claimed. 111



Exercise2 Define S(n) for ne Z* by the recurrence
0 if n=1
S(n):{s((n/ﬂ)ﬂ it n>2
Prove that for alin>1: S(n)>Ig(n), and hences(n) =Q(lgn )

There are many other variations on the inductichri@ue. Occasionallgouble induction is called for,
which involves a modification of both the base amtiiction steps.

Base Step: ProveP(n, )and P(n, + 1).
Induction Step: Prove Vn>(n, +2):(P(n—2) A P(n-1) - P(n)).

When these steps are complete, we conclide: n, : P(n . In)erms of our domino analogy, we prove:

(I) the first two dominos fall, and (ll) if any twoonsecutive dominos fall, then the very next damin
falls, and from (I) and (lI) we deduce that all doos fall. The next example uses double inductind
concerns the Fibonacci sequertedefined by:F, = Q F, =1, andF,=F, ,+F, ,, i.e. eachtermin the
sequence is the sum of the preceding two. Usirgrdturrence formula, the first few terms of the
Fibonacci sequence are easily computed= , FO=1, F,=1, F,=2, F,=3, F, =5, etc.

1++/5 _1—x/§
2 2

Example4 Leta= and b . Prove that for alh> 0, |F, :is[a” —b”].

/5

Proof:
Let P(n) denote the boxed equation above.

l. Base Step Observe thaP (Opnd P (1) are true since\/l—g[a0 - bo]: 0=F, and

1
NG

. Induction Step Let n> 2 and assume that bo®(n—  and P(n- 1) are true, i.e. we assume
for thisn that

[al—bl]:lz F.

Foz = %[a” - b“] and F_, = %[a”l N bnfl]_

’\/_
The induction hypothesis yields
1
F =F_,+F ,=—=[a"?(@a+1)-b"?*(b+1)]|.
1 2 \/g[ ]

One checks that andb are roots of the quadratic equati@h—x—-1= , vthencea’ =a+ land
b?> =b+1. Therefore
1 1
Fn:_an72.a2_bn72.b2 :_an_bn ,
4 |- Ll -]

showing thatP(n )is true.
1

\/g[a”—b”]forallnzo. Iy

Together (I) and (1) imply that, =



Exercise 3 Let F, be the Fibonacci sequence and defiress above. Show thdg, >a"? for all n> 2,
and hence~, =Q(a"). (Prove this by double induction, not as a consege of the last example.)

A Short Introduction to Graphs
Often the propositional functiorP(n )s some assertion concerning other types of madtieah

structures, such as graphs, or treesgrdoh G is a pair of set&s=(V,E .) The elements o¥ =& are
calledvertices, and the elements & are callededges. Each edge joins two distinct vertices, callésl it
ends, and no two edges have the same ends. Abstraatlgdge is an unordered pair of vertices, i.e. a 2
element subset &f. Two vertices that are joined by an edge are waltkadjacent, and an edge is said
to beincident with it's two end vertices. Two edges are saibé@djacent if they are incident with a
common end vertex. Thus in the example belowexettis adjacent to vertex 4, vertex 2 is incideith

edge 26, and edge 45 is adjacent to edge 53.
1 2 3

4 5 6
V={1, 2, 3, 4,5, 6} E={12, 14, 23, 24, 25, 26, 35, 36, 45, 56}

Let x,yeV . Anx-ypath in G is a sequence of vertices starting withnd ending witly, in which each

consecutive pair of vertices are adjacent. Weiredhat all vertices other thanandy be distinct, and
that each edge in the sequence be traversed atomoest We calk the initial vertex ang the terminal
vertex. If x=y, then the path is calledcgcle. Thelength of a path is the number of edges traversed by

the sequence. Inthe above example we have:

A 1-6 path of length 5: 1,2,4,5,3,6
A 1-6 path of length 3: 1,4,5,6
Another 1-6 path of length 3: 1,2, 3,6

gt
Acycle oflength6: 1,2,6,3,5,4,1
A cycle of length 3: 6,2,5,6

A graph is said to beonnected if it contains anx-y path for everyx,yeV , otherwise it is called
disconnected. The example above is clearly connected, whaefdliowing example is disconnected.

1 2 3 4

5 6 7 8 9
V={1, 2, 3,4,5,6, 7,8, 9} E={12, 15, 25, 26, 56, 37, 38, 78, 49}

A subgraph of a graphG is a graptH in whichV(H) cV(G), andE(H) < E(G ). In the above example
({1, 2, 5}, {12, 15, 25}) is a connected subgraphhile ({2, 3, 6, 7}, {26, 37}) is a disconnected



subgraph. A subgragt is called aconnected component of G if it is (i) connected, and (i) maximal with
respect to property (i), i.e. any other subgrapfeahat containgd is disconnected. The above example
clearly has three connected components: ({1, 8},512, 15, 25, 26, 56}), ({3, 7, 8}, {37, 38, #8 and
({4, 9}, {49}). Obviously a graph is connectedahd only if it has exactly one connected component.

A graphG is calledacyclic if it contains no cycles. #&eeis a graph that is both connected and acyclic.
The connected components of an acyclic graph avewdly trees. For this reason an acyclic graph is
sometimes called f@rest. The following graph is a forest with three cocteel components.

—o

o—0

Observe that the number of edges in each treasofdtest is one less than the number of vertiddss
is true for all trees, as we now show.

Example5 Foralln>1,|if T is a tree om vertices, the containsn—1 edges

Proof:
Let P(n)be the boxed statement above. We begimyat , and use the strong induction form Iid.

l. Base step
If T has just one vertex, then it can have no edgese & the definition of a graph, each edge
must have distinct end vertices. Therefére h@)ds.

IId. Induction Step
Let n>1 and assume for dllin the rangel < k < n, that P(k ) is true, i.e. for any sudh all trees
on k vertices contairk —1 edges. Now leT be a tree om vertices, pick any edgein T, and
remove it. The removal @& splits T into two subtrees, each having fewer tiavertices. (This
follows from some elementary facts about graphsiviaie omit for the sake of brevity.) Suppose
for the sake of definiteness that the two subthee® k;, and k, vertices, respectively. Since no

vertices were removed, we must hage-k, =n. By our inductive hypothesis, these two subtrees
have k, — 1and k, — 1edges, respectively. Upon replacing the eglgee see that the number of
edges originally inl must have bee(k, —1) + (k, -1) +1=k, +k, -1=n—- ,hs required.

By the second principle of mathematical inductialhirees om vertices haven—1 edges. Iy

Induction Fallacies

The next three examples illustrate some pitfallecavoided when constructing induction proofs.e Th
result in Example A was proved correctly in ExampleHere we give an invalid proof of the same fact
that illustrates an argument which some authors lsalled the induction trap”.



Example A Foralln>1, if T is a tree om vertices thed hasn—1 edges.

Proof: (Invalid)

Base Step: If n=1 thenT has no edges, since each edge must have distoheteetices.

Induction Step: Let n>1 and letT be a tree on vertices. Assume thdthasn-1 edges. Add a new
vertex and join it tol with a new edge. To be precise, the new edgeheasew vertex at one end, and
the other end can be any existing verteX.inThe resulting graph has+1 vertices ana edges, and is
clearly a tree since connectedness is maintained nancycles were created. By the principle of
mathematical induction, all trees orvertices haven—1 edges.

First note that the base step is identical to ild&xample 5, and is correct. For the inducticgpstthe

argument attempts to follow lla, but fails to da sim this exampleP(n )s of the form A(n) — B(n )

where A(n ) is the statementT*is a tree om vertices”, andB(n )is “T hasn-1 edges”. The induction
step should therefore be to prove, forralt 1, that P(n) > P(n+ 1), i.e.

(A(n) > B(n)) » (A(h+1) - B(n+1)).

To prove this, we should assund€n) — B(n , then assumeéA(n+ JDthen show as a consequence that
B(n+1)is true. In other words we should:

e Assume all trees omvertices haven—1 edges
e AssumeT hasn+1 vertices
e Show as a consequence thdtasn edges
The argument did not follow this format howevenstead it does the following.
e AssumeT hasn vertices
e AssumeTl hasn-1 edges
e Construct a new tree froinhaving n+1 vertices andh edges
Therefore the argument was not a proof by inducti®@ome students would nevertheless hold that the
argument is still valid, even though it is not aetinduction proof. The next example shows conngly
that it cannot be valid.

ExampleB Foralln>1, if G is a connected graph onvertices, theic hasn-1 edges. False!)

We notice right away that the above statement lge fasince the graph below provides an elementary
counter-example. But consider the following “prooflight of Example A.

Proof: (Invalid)

Base Step: If n=1 thenG has no edges, since each edge must have distitheteetices.

Induction Step: Let n>1 and letG be a connected graph arvertices. Assume th& hasn-1 edges.
Add a new vertex and join it t& with a new edge. The resulting graph masl vertices and edges,
and is clearly connected. By the principle of reathtical induction, all connected graphsrovertices
haven—1 edges. ]



Observe that Example B follows the format of Exaenpalexactly. Thus if A is valid, so must B be dali
But the assertion “proved” in B is false! Therefd cannot be a valid argument, and so neither is A

Example C All horses are of the same color.

Proof: (Invalid)
We prove that for alh > 1:| if Sis a set oh horses, then all horses $have the same colbr. The result
follows on lettingS be the set of all horses. LEB{n bg the boxed statement, and proceed by induction

onn.

Base Step: Let n=1. Obviously ifSis a set consisting of just one horse, then altdé®inS must have
the same color. ThuB (I3 true.

Induction Step: Let n>1 and assume that in any seindfiorses, all horses are of the same color. S et
be a set oh+1 horses, says={h,h,,h,,...,h ,}. Then the sets

S'={h,,h,,....h }=S-{h}
and
S"={h,h,.....h,.} =S-{h;}

each contain exactly horses, and so by the induction hypothesis abd®inS' are of one color, and
likewise for S". Observe thah, € S'n'S” and thath, can have only one color. Therefore the color of
the horses irS' is identical to that of the horses 8f . (Noten>1= n>2 = n+1>3, so thereis in
fact a third horse, and he can have only one goBinceS=S"U S’ it follows that all horses i® are of
the same color. Thu®(n+ 1 true, showing thaP(n) > P(n+ Ifor all n>1. The result now
follows by induction. [

Obviously the proposition being proved is false tisere is something wrong with the proof, but what?
The base step is certainly correct, and the indodiep, as stated, is also correct. The proldethmait the
induction step was not quantified properly. Wewdtidhave provedvn>1: P(n) > P(n+ 1)Instead we
proved (correctly) thatvn>1:P(n) > P(n+ 1) Indeed it is true thaP(2) > P Q)P3)— P(4), and
P@4)— P®), etc., but we never proved (and it is false thaf)) > P(2). In terms of the domino
analogy, it is as if the first domino falls; andaiiy domino indexed 2 or above were to fall, tHenriext
domino would fall; but the first domino is not dafént to topple the second domino, and hence no
domino other than the first actually falls.

Justification of the Induction Principles

Here we prove the validity of the first and secqnohciples of mathematical induction. Both proafe
based on thewvell ordering property of the positive integer *, which says: Any non-empty set of
positive integers contains a least element. We assume this property without proof.

Theorem 1 (weak induction form lIb)
For any propositional functio®(n defined on the positive integers, the followingteace is true:

[P A (Vn>1:P(n-1) - P(n))] > vn>1: P(n)



Proof:
Assume thatP (Dand Vn>1:P(n-1) - P(n) are both true. LeS={neZ" | P(n)is false } It is
sufficient to show thaS = &, since thenP(n )s true for alln>1. Assume, to get a contradiction, that

S# . Then, by the well ordering property @f", S contains a least element, calhit SinceP (1)is

true, we havelg S. Thereforem>1, and m-1 is a positive integer. Singr is the smallest element in
S we must haven—1¢ S, whenceP(m— 1l)is true. We have assumed for alb1 that P(n—-1) —» P(n)

is true. In particular fom=m, we haveP(m-1) - P(m ) Since bothP(m- land P(m-1) - P(m)
are true, we must conclude thafm is)also true. Thusng S, contradicting the very definition oh as
the smallest elemeim S. Thus our assumption was false, and he®egZ as required. 11

Theorem 2 (strong induction form lid)
For any propositional functio®(n defined on the positive integers, the followingteace is true:

[P@ A(Vn>1:(Vk <n:P(k))— P(n))] - vn>1: P(n)

Proof:

AssumeP (Dand vn>1: (Vk< n: P(k))—> P(n) are true, and again I8&={neZ" | P(n) is false . }As
before we shows =, henceP(n )is true for alln>1. Assume thatS= . By the well ordering
property,Scontains a least elememt SinceP (1)is true, we havdg¢ S. Thereforem>1, andm-1>1.
Sincem is the smallest element B we have for ank in the rangel<k <m-1 that ke S, whence
P(k) is true. In other wordsyk<m:P(k Js true. Now we have also assumed for ra#t 1, that
(Vk< n: P(k))—> P(n) is true. In particular, when=m, we have(Vk< m: P(k))—> P(m). Since both
vk <m:P(k) and (Vk< m: P(k))—> P(m) are true, we conclud®(m i} also true. Thusng S, again
contradicting the definition afn as the smallest elemeimt S. Our assumption was therefore false, and
henceS = as required. 111

Although we proved both theorems independentlis iossible to show that each implies the other, i.
theorems 1 and 2 are logically equivalent (exejcida fact both theorems are equivalent to thel wel
ordering property of the positive integers (exexgQis The terms “strong” and “weak” induction are
therefore in some sense misnomers, since neitle@reém is really stronger than the other. The term
“strong induction” refers instead to the strongessuamption being made in the induction step:
Vk<n:P(k) as opposed t®(n— 1)



