CMPS 101
 Final Review Problems

1. Let T be a binary tree, and let $n(T)$ and $h(T)$ denote its number of nodes and height, respectively. Show that $h(T) \geq\lfloor\lg (n(T))\rfloor$. (Hint: this was proved in the solutions to hw6.)
2. Trace HeapSort on the following arrays
a. $(9,3,5,4,8,2,5,10,12,2,7,4)$
b. $(5,3,7,1,10,12,19,24,5,7,2,6)$
c. $(9,8,7,6,5,4,3,2,1)$
3. Draw the Binary Search Tree resulting from inserting the keys: 5×83461927 (in that order) into an initially empty tree. Write pseudo-code for the following recursive algorithms, and write their output when run on this tree.
a. InOrderTreeWalk()
b. PreOrderTreeWalk()
c. PostOrderTreeWalk()

Note: Some of the topics represented by the following problems my not be covered by end of business

 Tuesday 8/11/09. If that is the case, those topics will not appear on the final exam.4. The predecessor of a node x in a Binary Search Tree is defined to be the node which is printed immediately before x in an InOrderTreeWalk(). Let T be a Binary Search Tree and let x be a node in T. Suppose x has no left child, and x has a predecessor y. State a characterization of the predecessor y similar to the characterization of successor in problem 2 of hw8. Write an algorithm called TreePredecessor() that returns the predecessor of a non-nil node x, if it exists, and returns nil otherwise.
5. State the following properties:
a. The Binary Search Tree Properties:
b. The Red-Black Tree Properties:
6. Let x be a node in a Red-Black tree, let $\operatorname{bh}(x)$ denote the black-height of x, and let $N(x)$ denote the number of internal (i.e. non nil) nodes in the subtree rooted at x. Show that $N(x) \geq 2^{\text {bh }(x)}-1$
7. Prove that any Red-Black tree on n nodes and with height h satisfies $h \leq 2 \lg (n+1)$. (Hint: use the result of the preceding problem.)
8. Let x be a node in a red-black tree. Show that the longest path from x to a descendent leaf has length at most twice that of a shortest such path.
9. Draw the Red-Black tree which results from inserting the keys $5,4,1,3,2$ (in order) into an initially empty tree. Draw all intermediate trees in this process.
