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CMPS 201 
Algorithms and Abstract Data Types 
 
 

Some Common Functions 
 
We present several common functions and estimates which occur frequently in the analysis of 
algorithms. 
 
Floors and Ceilings 
Given R∈x , we denote by  x  and  x  the floor of x and the ceiling of x, respectively.  These are 

defined to be the unique integers satisfying 
 

    11 +<≤≤<− xxxxx  

 
Equivalently, if R∈x  and Z∈N  then 
 

(1)   xN =   if and only if  1+<≤ NxN , and 

(2)   xN =   if and only if  NxN ≤<−1 . 

 
In other words: 
  

(1)  x  is the greatest integer less than or equal to x, and  

(2)  x  is the least integer greater than or equal to x.   

 
 
Lemma 1:  Let R∈x  and Z∈ba  , .  Then 

(1)  bxa <≤   if and only if    bxa <≤ , and  

(2)  bxa ≤<   if and only if    bxa ≤< . 

Proof of (1):   
(i)   xa ≤  implies  xa ≤ , since among all integers that are less than or equal to x,  x  is the greatest. 

(ii)  bx <  implies   bx < , since   xx ≤ . 

(iii)   xa ≤  implies xa ≤ , since   xx ≤ . 

(iv)    bx <  implies bx < , since xb ≤  implies  xb ≤ , by (i).                                                 ///   
 
Exercise:  prove part (2). 
 
Lemma 2:  Let R∈x  and +∈Zm .  Then 
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Proof of (1):  Let   mxN /= .  Then  
 

        1+<≤ N
m

x
N   

⇒    )1( +<≤ NmxmN   

⇒  )1( +<≤ NmxmN   (by lemma 1)  
⇒  1/ +<≤ NmxN   
⇒   mxN /= ,  

 
and therefore      mxNmx // == .                                                                                         ///   
 
Exercise:  prove part (2). 
 
 
Lemma 3:  Let +∈Znba  , , .  Then 
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Proof:  Set anx /=  and bm =  in lemma 2.                                                                               ///   
 
Exercise   

Let Z∈n .  Show that  (a) n
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Logarithms 
Let R∈bax  , ,  where 0>x , 1>a , and 1>b .  Then )(log xa  denotes the exponent on a which gives x.  

In other words, )(log xa  is the inverse function of xa , which means xa xa =)(log  and xa x
a =)(log .  

Thus 
 

( ) )(log)(log)(log)(log)(log xaxax ababa bbax ⋅===  
 
Taking blog  of both sides of this equation yields 

 
(*)   )(log)(log)(log xax abb ⋅= , 

 
which says in particular )(logconstant)(log xx ab ⋅= , i.e. any two log functions differ by a constant 

multiple.  It follows that ))((log)(log nn ab Θ= , so speaking in terms of asymptotic growth rates, there 

is really only one log function.  Equation (*) implies  
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which shows how to convert from one log function to another.  In particular 
)2ln(

)ln(
)lg(

x
x = .  Here we 

use the standard notation ) (log) lg( 2= , and ) (log) ln( e= , where ..71828.2=e  .  Equation (*) also 

implies ( ) )(log)(log)(log)(log)(log)(log aaxaxx bbabab xaaa === ⋅ , which gives us the useful formula 
 

)(log)(log ax bb xa = . 
 
 
Stirling's Formula  

Let +∈Zn .  Then  
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Stirling's formula gives a simple way to determine asymptotic (upper, lower, and tight) bounds on 
functions involving ! n .  An elementary proof can be found at  
 

http://www.sosmath.com/calculus/sequence/stirling/stirling.html 
 
Corollary:    
(1)  )(  ! nnon =  

(2)  )(  ! nbn ω=  for any 0>b  
(3)  ))log((  )! log( nnn Θ=  
Proof of (1):   
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  as  ∞→n , showing that )(  ! nnon = .   ///   

 
Proof of (3):  Taking log (any base) of both sides of Stirling's formula, we get 
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Exercise:  Prove part (2) of the corollary. 
 

Exercise: Prove that 
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for mk ≤≤0 . 
 

Exercise:  Determine a number 0>a  such that 
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