CMPS 201

Algorithms and Abstract Data Types

Some Common Functions

We present several common functions and estimates which occur frequently in the analysis of algorithms.

Floors and Ceilings

Given $x \in \mathbf{R}$, we denote by $\lfloor x\rfloor$ and $\lceil x\rceil$ the floor of x and the ceiling of x, respectively. These are defined to be the unique integers satisfying

$$
x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1
$$

Equivalently, if $x \in \mathbf{R}$ and $N \in \mathbf{Z}$ then
(1) $N=\lfloor x\rfloor$ if and only if $N \leq x<N+1$, and
(2) $N=\lceil x\rceil$ if and only if $N-1<x \leq N$.

In other words:
(1) $\lfloor x\rfloor$ is the greatest integer less than or equal to x, and
(2) $\lceil x\rceil$ is the least integer greater than or equal to x.

Lemma 1: Let $x \in \mathbf{R}$ and $a, b \in \mathbf{Z}$. Then
(1) $a \leq x<b$ if and only if $a \leq\lfloor x\rfloor<b$, and
(2) $a<x \leq b$ if and only if $a<\lceil x\rceil \leq b$.

Proof of (1):

(i) $a \leq x$ implies $a \leq\lfloor x\rfloor$, since among all integers that are less than or equal to $x,\lfloor x\rfloor$ is the greatest.
(ii) $x<b$ implies $\lfloor x\rfloor<b$, since $\lfloor x\rfloor \leq x$.
(iii) $a \leq\lfloor x\rfloor$ implies $a \leq x$, since $\lfloor x\rfloor \leq x$.
(iv) $\lfloor x\rfloor<b$ implies $x<b$, since $b \leq x$ implies $b \leq\lfloor x\rfloor$, by (i).

Exercise: prove part (2).
Lemma 2: Let $x \in \mathbf{R}$ and $m \in \mathbf{Z}^{+}$. Then
(1) $\left\lfloor\frac{\lfloor x\rfloor}{m}\right\rfloor=\left\lfloor\frac{x}{m}\right\rfloor$, and
(2) $\left\lceil\frac{\lceil x\rceil}{m}\right\rceil=\left\lceil\frac{x}{m}\right\rceil$.

Proof of (1): Let $N=\lfloor\lfloor x\rfloor / m\rfloor$. Then

$$
\begin{aligned}
& N \leq \frac{\lfloor x\rfloor}{m}<N+1 \\
\Rightarrow & m N \leq\lfloor x\rfloor<m(N+1) \\
\Rightarrow & m N \leq x<m(N+1) \quad \text { (by lemma 1) } \\
\Rightarrow & N \leq x / m<N+1 \\
\Rightarrow & N=\lfloor x / m\rfloor,
\end{aligned}
$$

and therefore $\lfloor\lfloor x\rfloor / m\rfloor=N=\lfloor x / m\rfloor$.
Exercise: prove part (2).

Lemma 3: Let $a, b, n \in \mathbf{Z}^{+}$. Then

$$
\begin{aligned}
& \text { (1) } \left.\left\lvert\, \frac{\lfloor n / a\rfloor}{b}\right.\right\rfloor=\left\lfloor\frac{n}{a b}\right\rfloor \text {, and } \\
& \text { (2) }\left\lceil\frac{\lceil n / a\rceil}{b}\right\rceil=\left\lceil\frac{n}{a b}\right\rceil \text {. }
\end{aligned}
$$

Proof: Set $x=n / a$ and $m=b$ in lemma 2 .

Exercise

Let $n \in \mathbf{Z}$. Show that (a) $\left\lfloor\frac{n}{2}\right\rfloor+\left\lceil\frac{n}{2}\right\rceil=n$, (b) $\left\lceil\frac{n}{2}\right\rceil=\left\lfloor\frac{n+1}{2}\right\rfloor$, and (c) $\left\lfloor\frac{n}{2}\right\rfloor=\left\lceil\frac{n-1}{2}\right\rceil$.

Logarithms

Let $x, a, b \in \mathbf{R}$ where $x>0, a>1$, and $b>1$. Then $\log _{a}(x)$ denotes the exponent on a which gives x. In other words, $\log _{a}(x)$ is the inverse function of a^{x}, which means $a^{\log _{a}(x)}=x$ and $\log _{a}\left(a^{x}\right)=x$. Thus

$$
x=a^{\log _{a}(x)}=\left(b^{\log _{b}(a)}\right)^{\log _{a}(x)}=b^{\log _{b}(a) \cdot \log _{a}(x)}
$$

Taking $\log _{b}$ of both sides of this equation yields

$$
\begin{equation*}
\log _{b}(x)=\log _{b}(a) \cdot \log _{a}(x), \tag{*}
\end{equation*}
$$

which says in particular $\log _{b}(x)=$ constant $\cdot \log _{a}(x)$, i.e. any two \log functions differ by a constant multiple. It follows that $\log _{b}(n)=\Theta\left(\log _{a}(n)\right)$, so speaking in terms of asymptotic growth rates, there is really only one \log function. Equation $(*)$ implies

$$
\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)}
$$

which shows how to convert from one \log function to another. In particular $\lg (x)=\frac{\ln (x)}{\ln (2)}$. Here we use the standard notation $\lg ()=\log _{2}()$, and $\ln ()=\log _{e}()$, where $e=2.71828$.. . Equation (*) also implies $a^{\log _{b}(x)}=a^{\log _{a}(x) \cdot \log _{b}(a)}=\left(a^{\log _{a}(x)}\right)^{\log _{b}(a)}=x^{\log _{b}(a)}$, which gives us the useful formula

$$
a^{\log _{b}(x)}=x^{\log _{b}(a)} .
$$

Stirling's Formula

Let $n \in \mathbf{Z}^{+}$. Then $n!=\sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n} \cdot\left(1+\Theta\left(\frac{1}{n}\right)\right)$.
Stirling's formula gives a simple way to determine asymptotic (upper, lower, and tight) bounds on functions involving $n!$. An elementary proof can be found at

http://www.sosmath.com/calculus/sequence/stirling/stirling.html

Corollary:

(1) $n!=o\left(n^{n}\right)$
(2) $n!=\omega\left(b^{n}\right)$ for any $b>0$
(3) $\log (n!)=\Theta(n \log (n))$

Proof of (1):

$$
\frac{n!}{n^{n}}=\frac{\sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n} \cdot\left(1+\Theta\left(\frac{1}{n}\right)\right)}{n^{n}}=\frac{\sqrt{2 \pi n} \cdot\left(1+\Theta\left(\frac{1}{n}\right)\right)}{e^{n}} \rightarrow 0 \text { as } n \rightarrow \infty, \text { showing that } n!=o\left(n^{n}\right)
$$

Proof of (3): Taking log (any base) of both sides of Stirling's formula, we get

$$
\begin{aligned}
\log (n!) & =\log \sqrt{2 \pi n}+\log \left(\frac{n}{e}\right)^{n}+\log \left(1+\Theta\left(\frac{1}{n}\right)\right) \\
& =\frac{1}{2} \log (2 \pi)+\frac{1}{2} \log (n)+n \log (n)-n \log (e)+\log \left(1+\Theta\left(\frac{1}{n}\right)\right)
\end{aligned}
$$

Therefore

$$
\frac{\log (n!)}{n \log (n)}=1+(\text { stuff that } \rightarrow 0 \text { as } n \rightarrow \infty)
$$

hence $\lim _{n \rightarrow \infty}\left(\frac{\log (n!)}{n \log (n)}\right)=1$, proving that $\log (n!)=\Theta(n \log (n))$.

Exercise: Prove part (2) of the corollary.
Exercise: Prove that $\binom{2 n}{n}=\Theta\left(\frac{4^{n}}{\sqrt{n}}\right)$, where $\binom{m}{k}$ denotes the binomial coefficient $\binom{m}{k}=\frac{m!}{k!(m-k)!}$, for $0 \leq k \leq m$.

Exercise: Determine a number $a>0$ such that $\binom{3 n}{n}=\Theta\left(\frac{a^{n}}{\sqrt{n}}\right)$.

