CMPS 201 Algorithms and Abstract Data Types

Some Common Functions

We present several common functions and estimates which occur frequently in the analysis of algorithms.

Floors and Ceilings

Given $x \in \mathbf{R}$, we denote by $\lfloor x \rfloor$ and $\lceil x \rceil$ the *floor of x* and the *ceiling of x*, respectively. These are defined to be the unique integers satisfying

$$x-1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x+1$$

Equivalently, if $x \in \mathbf{R}$ and $N \in \mathbf{Z}$ then

(1)
$$N = \lfloor x \rfloor$$
 if and only if $N \le x < N+1$, and
(2) $N = \lceil x \rceil$ if and only if $N-1 < x \le N$.

In other words:

(1) $\lfloor x \rfloor$ is the greatest integer less than or equal to x, and (2) $\lceil x \rceil$ is the least integer greater than or equal to x.

Lemma 1: Let $x \in \mathbf{R}$ and $a, b \in \mathbf{Z}$. Then

(1) $a \le x < b$ if and only if $a \le \lfloor x \rfloor < b$, and (2) $a < x \le b$ if and only if $a < \lceil x \rceil \le b$.

Proof of (1):

(i) a ≤ x implies a ≤ [x], since among all integers that are less than or equal to x, [x] is the greatest.
(ii) x < b implies [x] < b, since [x] ≤ x.
(iii) a ≤ [x] implies a ≤ x, since [x] ≤ x.
(iv) [x] < b implies x < b, since b ≤ x implies b ≤ [x], by (i). ///

Exercise: prove part (2).

Lemma 2: Let $x \in \mathbf{R}$ and $m \in \mathbf{Z}^+$. Then (1) $\left\lfloor \frac{\lfloor x \rfloor}{m} \right\rfloor = \left\lfloor \frac{x}{m} \right\rfloor$, and (2) $\left\lceil \frac{\lceil x \rceil}{m} \right\rceil = \left\lceil \frac{x}{m} \right\rceil$. **Proof of (1):** Let $N = \bigsqcup x \rfloor / m \rfloor$. Then

$$N \leq \frac{\lfloor x \rfloor}{m} < N+1$$

$$\Rightarrow mN \leq \lfloor x \rfloor < m(N+1)$$

$$\Rightarrow mN \leq x < m(N+1) \qquad \text{(by lemma 1)}$$

$$\Rightarrow N \leq x/m < N+1$$

$$\Rightarrow N = \lfloor x/m \rfloor,$$

and therefore $\lfloor \lfloor x \rfloor / m \rfloor = N = \lfloor x / m \rfloor$.

Exercise: prove part (2).

Lemma 3: Let
$$a, b, n \in \mathbb{Z}^+$$
. Then
(1) $\left\lfloor \frac{\lfloor n/a \rfloor}{b} \right\rfloor = \left\lfloor \frac{n}{ab} \right\rfloor$, and
(2) $\left\lceil \frac{\lceil n/a \rceil}{b} \right\rceil = \left\lceil \frac{n}{ab} \right\rceil$.

Proof: Set x = n/a and m = b in lemma 2.

Exercise

Let
$$n \in \mathbb{Z}$$
. Show that (a) $\left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{2} \right\rceil = n$, (b) $\left\lceil \frac{n}{2} \right\rceil = \left\lfloor \frac{n+1}{2} \right\rfloor$, and (c) $\left\lfloor \frac{n}{2} \right\rfloor = \left\lceil \frac{n-1}{2} \right\rceil$.

Logarithms

Let $x, a, b \in \mathbf{R}$ where x > 0, a > 1, and b > 1. Then $\log_a(x)$ denotes the exponent on a which gives x. In other words, $\log_a(x)$ is the inverse function of a^x , which means $a^{\log_a(x)} = x$ and $\log_a(a^x) = x$. Thus

///

///

$$x = a^{\log_a(x)} = \left(b^{\log_b(a)}\right)^{\log_a(x)} = b^{\log_b(a) \cdot \log_a(x)}$$

Taking \log_b of both sides of this equation yields

(*)
$$\log_b(x) = \log_b(a) \cdot \log_a(x),$$

which says in particular $\log_b(x) = \text{constant} \cdot \log_a(x)$, i.e. any two log functions differ by a constant multiple. It follows that $\log_b(n) = \Theta(\log_a(n))$, so speaking in terms of asymptotic growth rates, there is really only one log function. Equation (*) implies

$$\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$$

which shows how to convert from one log function to another. In particular $lg(x) = \frac{ln(x)}{ln(2)}$. Here we use the standard notation $lg() = log_2()$, and $ln() = log_e()$, where e = 2.71828... Equation (*) also implies $a^{log_b(x)} = a^{log_a(x) \cdot log_b(a)} = (a^{log_a(x)})^{log_b(a)} = x^{log_b(a)}$, which gives us the useful formula

$$a^{\log_b(x)} = x^{\log_b(a)}.$$

Stirling's Formula

Let
$$n \in \mathbf{Z}^+$$
. Then $n! = \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)$.

Stirling's formula gives a simple way to determine asymptotic (upper, lower, and tight) bounds on functions involving n!. An elementary proof can be found at

http://www.sosmath.com/calculus/sequence/stirling/stirling.html

Corollary:

(1) $n! = o(n^n)$ (2) $n! = o(b^n)$ for any b > 0(3) $\log(n!) = \Theta(n\log(n))$ **Proof of (1):** $\frac{n!}{n^n} = \frac{\sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)}{n^n} = \frac{\sqrt{2\pi n} \cdot \left(1 + \Theta\left(\frac{1}{n}\right)\right)}{e^n} \to 0 \text{ as } n \to \infty, \text{ showing that } n! = o(n^n). ///$

Proof of (3): Taking log (any base) of both sides of Stirling's formula, we get

$$\log(n!) = \log \sqrt{2\pi n} + \log \left(\frac{n}{e}\right)^n + \log \left(1 + \Theta\left(\frac{1}{n}\right)\right)$$
$$= \frac{1}{2}\log(2\pi) + \frac{1}{2}\log(n) + n\log(n) - n\log(e) + \log\left(1 + \Theta\left(\frac{1}{n}\right)\right).$$

Therefore

$$\frac{\log(n!)}{n\log(n)} = 1 + (\text{stuff that} \to 0 \text{ as } n \to \infty),$$

hence $\lim_{n \to \infty} \left(\frac{\log(n!)}{n \log(n)} \right) = 1$, proving that $\log(n!) = \Theta(n \log(n))$. ///

Exercise: Prove part (2) of the corollary.

Exercise: Prove that $\binom{2n}{n} = \Theta\left(\frac{4^n}{\sqrt{n}}\right)$, where $\binom{m}{k}$ denotes the binomial coefficient $\binom{m}{k} = \frac{m!}{k!(m-k)!}$, for $0 \le k \le m$.

Exercise: Determine a number a > 0 such that $\binom{3n}{n} = \Theta\left(\frac{a^n}{\sqrt{n}}\right)$.