
CMPS 101

Algorithms and Abstract Data Types

Summer 2008

Programming Assignment 5

Due Tuesday August 12, 10:00 pm

In this assignment you will build a Graph module in C, implement Depth First Search (DFS), and use

your Graph module to find the strongly connected components of a directed graph. Begin by reading

sections 22.3-22.5 in the text.

A digraph),(EVG = is said to be strongly connected if for every pair of vertices Vvu ∈, , u is reachable

from v, and v is reachable from u. Most directed graphs are not strongly connected. In general we say a

subset VX ⊆ is strongly connected if every vertex in X is reachable from every other vertex in X. A

strongly connected subset which is maximal with respect to this property is called a strongly connected

component of G. In other words, VX ⊆ is a strongly connected component of G if and only if (i) X is

strongly connected, and (ii) the addition of one more vertex to X would create a subset which is not

strongly connected.

Example
 1 2 3 4

 G

 5 6 7 8

It’s easy to see that there are 4 strong components of G: }5 ,2 ,1{1 =C , }4 ,3{2 =C , }7 ,6{3 =C , and

}8{4 =C .

To find the strong components of a digraph G first call)(DFS G , then as vertices are finished, place them

on a stack. When this is complete the stack stores the vertices ordered by decreasing finish times. Next

compute the transpose TG of G, which is obtained by reversing the directions on all edges of G. Finally,

run)(DFS TG , but in the main loop (lines 5-7) of DFS, process vertices by decreasing finish times.

(Here we mean finish times from the first call to DFS.) This is accomplished by simply popping vertices

off the stack created in the first call. When this process is complete the trees in the resulting Depth First

forest constitute the strong components of G. (Note the strong components of G are identical to the strong

components of TG .) See the algorithm (Strongly-Connected-Components) and proof of correctness in

section 22.5 of the text.

In this assignment you will create a graph module in C which represents a directed graph by an array of

adjacency lists. Your graph module will, among other things, provide the capability of running DFS, and

computing the transpose of a directed graph. DFS requires that vertices posses attributes for color (white,

black, grey), discover time, finish time, and parent. Here is a catalog of required functions and their

prototypes:

/* Constructors-Destructors */

GraphRef newGraph(int n);

void freeGraph(GraphRef* pG);

/* Access functions */

int getOrder(GraphRef G);

int getSize(GraphRef G);

int getParent(GraphRef G, int u); /* Pre: 1<=u<=n=getOrder(G) */

int getDiscover(GraphRef G, int u); /* Pre: 1<=u<=n=getOrder(G) */

int getFinish(GraphRef G, int u); /* Pre: 1<=u<=n=getOrder(G) */

/* Manipulation procedures */

void addArc(GraphRef G, int u, int v); /* Pre: 1<=u<=n, 1<=v<=n */

void DFS(GraphRef G, ListRef S); /* Pre: getLength(S)==getOrder(G) */

/* Other Functions */

GraphRef transpose(GraphRef G);

GraphRef copyGraph(GraphRef G);

void printGraph(FILE* out , GraphRef G);

Function newGraph() will return a handle to a new graph object containing n vertices and no edges.

freeGraph() frees all heap memory associated with a graph object and sets it’s GraphRef argument to

NULL. Function getOrder() returns the number of vertices in the graph G, while functions getParent(),

getDiscover(), and getFinish() return the appropriate field values for the given vertex. Note that the

parent of a vertex may be NIL. Also the discover and finish times of vertices will be undefined before

DFS is called. You must #define constant macros for NIL and UNDEF which represent those values, and

place the definitions in the file Graph.h. The function addArc() will add vertex v to the adjacency list of

vertex u (but not u to the adjacency list of v), thus establishing a directed edge from u to v.

The function DFS() will perform the depth first search algorithm on G. The List S has two purposes in

this function. First it defines the order in which vertices will be processed in the main loop (5-7) of DFS.

Second, when DFS is complete, it will store the vertices in order of decreasing finish times (hence S can

be considered to be a stack). The List S can therefore be classified as both an input and an output

parameter to function DFS(). Obviously you should utilize the List module you created in pa2 to

implement S and the adjacency lists which represent G. DFS() has two preconditions: (i) getLength(S) =

n, and (ii) S contains some permutation of the integers {1, 2, ..., n} where n = getOrder(G). You are

required to check the first precondition but not the second.

Recall that DFS() calls the recursive algorithm Visit() (DFS-Visit in the text), and uses a variable called

time which is static over all recursive calls to Visit. There are at least three possible approaches to

implementing Visit(). You can define Visit() as a top level function in your graph implementation file

(which is private and therefore not exported), and let time be a static variable whose scope is the entire

file. This option has the drawback that other functions in the same file would have access to the global

time variable. The second approach is to let time be a local variable in DFS(), then pass the address of

time to Visit(), making it an input-output variable to Visit(). This is perhaps the simplest option, and is

recommended. The third approach is to again let time be a local variable in DFS(), then nest the

definition of Visit() within the definition of DFS(). Since time is local to DFS(), it’s scope includes the

defining block for Visit(), and is therefore static throughout all recursive calls to Visit(). This may be

tricky if you’re not used to nesting function definitions since there are issues of scope to deal with. If you

pick this option, first experiment with a few simple examples to make sure you know how it works. Note

that although nesting function definitions is not a standard feature of ANSI C, and is not supported by

many compilers, it is supported by the gcc compiler (even with the –ansi flag for some reason). If you

plan to develop your project on another platform, this approach may not be possible.

Function transpose() returns a handle to a new graph object representing the transpose of G, and

copyGraph() returns a handle to a new graph which is a copy of G. Both transpose() and copyGraph()

could be considered constructors since they create new graph objects. Function printGraph() prints the

adjacency list representation of G to the file pointed to by out. Obviously there is much in common

between the graph module in this project and the one in pa4. If you wish, you may simply add

functionality necessary for this project to that previous module, although it is not required that you do so.

You should make note of choices such as this in your README file.

The client of your Graph module will be called FindComponents. It will take two command line

arguments giving the names of the input and output files respectively:

% FindComponents infile outfile

The main program FindComponents will do the following:

• Read the input file.

• Assemble a graph object G using newGraph() and addArc().

• Print the adjacency list representation of G to the output file.

• Run DFS on G and TG , processing the vertices in the second call by decreasing finish times from

the first call.

• Determine the strong components of G.

• Print the strong components of G to the output file in topologically sorted order.

After the second call to DFS, the List parameter S can be used to determine the strong components of G. I

suggest you trace the algorithm Strongly-Connected-Components (p.554) on several small examples,

keeping track of the List S, to see how this can be done. Input and output file formats are illustrated in the

following example, which corresponds to the directed graph on the first page of this handout:

Input:
8

1 2

2 3

2 5

2 6

3 4

3 7

4 3

4 8

5 1

5 6

6 7

7 6

7 8

8 8

0 0

Output:
Adjacency list representation of G:

1: 2

2: 3 5 6

3: 4 7

4: 3 8

5: 1 6

6: 7

7: 6 8

8: 8

G contains 4 strongly connected components:

Component 1: 1 5 2

Component 2: 3 4

Component 3: 7 6

Component 4: 8

Observe that the input file format is very similar to that of pa4. The first line gives the number of vertices

in the graph, subsequent lines specify directed edges, and input is terminated by the ‘dummy’ line 0 0.

You are required to submit the following files: README, Makefile, List.c, List.h, ListTest.c, Graph.h,

Graph.c, GraphTest.c, FindComponents.c. As usual README contains a catalog of submitted files and

any special notes to the grader. Makefile should be capable of making the executables ListTest,

GraphTest, FindComponents, and should contain a clean utility which removes all object files. Graph.c

and Graph.h are the implementation and interface files respectively for your Graph module. GraphTest.c

is used for testing of your Graph module. FindComponents.c implements the top level client and main

program for this project. To get full credit, your project must implement all required files and functions,

compile without errors or warnings, produce correct output on our test files, and produce no memory

leaks under bcheck. By now everyone knows that points are deducted both for neglecting to include

required files, and for submitting additional unwanted files, but let me say it anyway: do not submit

binary files of any kind.

Note that FindComponents needs to pass a List to the function DFS, so it is also a client of the List

module and must therefore #include the file List.h. Also note that the Graph module will be exporting a

function which takes a ListRef argument (namely DFS). Therefore any file which #includes Graph.h

(namely Graph.c, GraphTest.c, and FindComponents.c) must have the preprocessor directive #include for

List.h appear before that for Graph.h, since the compiler must see the typedef which defines ListRef

before it sees the prototype for function DFS(). Failure to do this will cause a syntax error. Do not

resolve this syntax error by putting #include List.h inside Graph.h.

Below is a Makefile which you may alter as you see fit:

Makefile for Graph ADT and related modules.

make makes FindComponents

make GraphTest makes GraphTest

make ListTest makes ListTest

make clean removes all object and executable files

FindComponents : FindComponents.o Graph.o List.o

 gcc -o FindComponents FindComponents.o Graph.o List.o

GraphTest : GraphTest.o Graph.o List.o

 gcc -o GraphTest GraphTest.o Graph.o List.o

ListTest : ListTest.o List.o

 gcc -o ListTest ListTest.o List.o

FindComponents.o : FindComponents.c Graph.h List.h

 gcc -c -ansi -Wall FindComponents.c

GraphTest.o : GraphTest.c Graph.h List.h

 gcc -c -ansi -Wall GraphTest.c

ListTest.o : ListTest.c List.h

 gcc -c -ansi -Wall ListTest.c

Graph.o : Graph.c Graph.h List.h

 gcc -c -ansi -Wall Graph.c

List.o : List.c List.h

 gcc -c -ansi -Wall List.c

clean :

 rm -f FindComponents GraphTest ListTest FindComponents.o \

 GraphTest.o ListTest.o Graph.o List.o

Start Early and ask questions if anything is not completely clear.

