
CMPS 101

Algorithms and Abstract Data Types

Summer 2008

Programming Assignment 3

Due Wednesday July 23, 10:00 pm

In this assignment you will create a calculator for performing matrix operations that exploits the

(expected) sparseness of it’s matrix operands. An nn× square matrix is said to be sparse if the number

of non-zero entries (abbreviated NNZ) is small compared to the total number of entries 2n . The result

will be a Java program capable of performing fast matrix operations, even on very large matrices,

provided they are sparse.

Given nn× matrices A and B, their product BAC ⋅= is the nn× matrix whose ij
th
 entry is given by

kj

n

k

ikij BAC ∑
=

=
1

.

Thus the element in the i
th
 row and j

th
 column of C is the vector dot product of the i

th
 row of A and the j

th

column of B. If we take addition and multiplication of real numbers as our basic operations, then the

above formula can be computed in time)(3nΘ , which is impractical for matrix sizes n of more than a few

thousand. If it so happens that A and B are sparse, then a great many of these arithmetic operations are

unnecessary. The sum S, and difference D, of A and B are the nn× matrices having ij
th
 entries:

ijijij BAS += and ijijij BAD −=

The scalar product of a real number x with A is denoted xA , and has ij
th
 entry ijij AxxA ⋅=)(. The

transpose of A, denoted TA , is the matrix T whose thij entry is the thji entry of A: jiij AT = . In other

words, transposition “flips” the rows and columns of A. Each of these operations can be computed in

time)(2nΘ , and just as for multiplication, their cost can be improved upon significantly when A and B

are sparse.

As one would expect, the cost of a matrix operation depends heavily on the choice of data structure used

to represent the matrix operands. There are several ways to represent a matrix with real entries. The

standard approach is to use a 2-dimensional nn× array of doubles. The advantage of this representation

is that all of the above matrix operations have a straight-forward implementation. In this project you will

represent a matrix as a 1-dimensional array of Lists. Each List will represent one row of the Matrix, but

only the non-zero entries will be stored. Therefore List elements must store not just the matrix entries,

but the columns in which those entries reside. For example, the matrix below would have the following

representation as an array of Lists.

















=

0.50.40.0

0.00.00.3

0.20.00.1

M Array of Lists:









)0.5,3()0.4,2(:3

)0.3,1(:2

)0.2,3()0.1,1(:1

This method obviously results in a substantial space savings when the Matrix is sparse. In addition, the

standard matrix operations defined above can be performed more efficiently on sparse matrices. We shall

see however that the matrix operations are much less straight-forward to implement using this

representation. The trade-off is therefore a gain in space and time efficiency for sparse matrices, at the

expense of more complicated algorithms for performing standard matrix operations. Designing these

algorithms in terms of List operations will constitute the majority of the work you do on this assignment.

It will be necessary to make some minor changes to your List ADT from pa1. You must first convert

your List ADT from a List of ints to a List of Objects. This entails changing certain field types,

declaration statements, method parameters, and return types from int to Object. The Objects referred to

by these List elements will be defined in the Matrix ADT specified below. Second, it will be necessary to

eliminate the List operations copy() and cat() (which was optional anyway.) All other List operations

from pa1 will be retained. The equals() operation however will be altered slightly so as to override, rather

than overload, Object's built in equals() method. This is done by changing it's signature from boolean

equals(List L), as in pa1 to public boolean equals(Object x), which is it's signature in the

superclass Object. Indeed, all equals() methods in this project should carry this same signature.

File Formats

The top level client for this project will be called Sparse.java. It will take two command line arguments

giving the names of the input and output files, respectively. The input file will begin with a single line

containing three integers n, a, and b, separated by spaces. The second line will be blank, and the

following a lines will specify the non-zero entries of an nn× matrix A. Each of these lines will contain a

space separated list of three numbers: two integers and a double, giving the row, column, and value of the

corresponding matrix entry. After another blank line, will follow b lines specifying the non-zero entries

of an nn× matrix B. For example, the two matrices

















=

0.90.80.7

0.60.50.4

0.30.20.1

A and

















=

0.10.10.1

0.00.00.0

0.10.00.1

B

are encoded by the following input file:

3 9 5

1 1 1.0

1 2 2.0

1 3 3.0

2 1 4.0

2 2 5.0

2 3 6.0

3 1 7.0

3 2 8.0

3 3 9.0

1 1 1.0

1 3 1.0

3 1 1.0

3 2 1.0

3 3 1.0

Your program will read an input file such as above, initialize and build the Array of Lists representation

of the matrices A and B, then calculate and print the following matrices to the output file: A, B, A)5.1(,

BA+ , AA+ , AB − , AA− , TA , AB , and 2B . The output file format is illustrated by the following

example, which corresponds to the above input file.

A has 9 non-zero entries:

1: (1, 1.0) (2, 2.0) (3, 3.0)

2: (1, 4.0) (2, 5.0) (3, 6.0)

3: (1, 7.0) (2, 8.0) (3, 9.0)

B has 5 non-zero entries:

1: (1, 1.0) (3, 1.0)

3: (1, 1.0) (2, 1.0) (3, 1.0)

(1.5)*A =

1: (1, 1.5) (2, 3.0) (3, 4.5)

2: (1, 6.0) (2, 7.5) (3, 9.0)

3: (1, 10.5) (2, 12.0) (3, 13.5)

A+B =

1: (1, 2.0) (2, 2.0) (3, 4.0)

2: (1, 4.0) (2, 5.0) (3, 6.0)

3: (1, 8.0) (2, 9.0) (3, 10.0)

A+A =

1: (1, 2.0) (2, 4.0) (3, 6.0)

2: (1, 8.0) (2, 10.0) (3, 12.0)

3: (1, 14.0) (2, 16.0) (3, 18.0)

B-A =

1: (2, -2.0) (3, -2.0)

2: (1, -4.0) (2, -5.0) (3, -6.0)

3: (1, -6.0) (2, -7.0) (3, -8.0)

A-A =

Transpose(A) =

1: (1, 1.0) (2, 4.0) (3, 7.0)

2: (1, 2.0) (2, 5.0) (3, 8.0)

3: (1, 3.0) (2, 6.0) (3, 9.0)

A*B =

1: (1, 4.0) (2, 3.0) (3, 4.0)

2: (1, 10.0) (2, 6.0) (3, 10.0)

3: (1, 16.0) (2, 9.0) (3, 16.0)

B*B =

1: (1, 2.0) (2, 1.0) (3, 2.0)

3: (1, 2.0) (2, 1.0) (3, 2.0)

Notice that the rows are to be printed in column sorted order, and zero rows are to be skipped altogether.

On the other hand, the input file may give the matrix entries in any order.

Matrix ADT Specifications

In addition to the main program Sparse.java and the altered List.java from pa1, you will implement a

Matrix ADT in a file called Matrix.java, which defines the Matrix class. This class will contain a private

inner class (similar to Node in your List ADT) that encapsulates the column and value information

corresponding to a matrix entry. You may give this inner class any name you wish, but I will refer to it

here as Entry. Thus Entry will have two fields that store types int and double respectively. Entry must

also contain its own equals() and toString() methods which override the corresponding methods in the

Object superclass. Your Matrix class will represent a matrix as an array of Lists of Entry Objects. It is

highly recommended that these Lists be maintained in column sorted order. Your Matrix ADT will

export the following operations.

// Constructor ////////////////////////

Matrix(int n) // Makes a new n x n zero Matrix. pre: n>=1

// Access functions ///////////////////

int getSize() // Returns n, the number of rows and columns of this Matrix

int getNNZ() // Returns the number of non-zero entries in this Matrix

public boolean equals(Object x) // overrides Object's equals() method

// Manipulation procedures ////////////

void makeZero() // sets this Matrix to the zero state

Matrix copy()// returns a new Matrix having the same entries as this Matrix

void changeEntry(int i, int j, double x)

 // changes ith row, jth column of this Matrix to x

 // pre: 1<=i<=getSize(), 1<=j<=getSize()

Matrix scalarMult(double x)

 // returns a new Matrix that is the scalar product of this Matrix with x

Matrix add(Matrix M)

 // returns a new Matrix that is the sum of this Matrix with M

 // pre: getSize()==M.getSize()

Matrix sub(Matrix M)

 // returns a new Matrix that is the difference of this Matrix with M

 // pre: getSize()==M.getSize()

Matrix transpose()

 // returns a new Matrix that is the transpose of this Matrix

Matrix mult(Matrix M)

 // returns a new Matrix that is the product of this Matrix with M

 // pre: getSize()==M.getSize()

// Other functions ////////////////////

public String toString() // overrides Object's toString() method

It is required that your program perform these operations efficiently. Let n be the number of rows in A,

and let a and b denote the number of non-zero entries in A and B respectively. Then functions copy(),

changeEntry(), scalarMult(), and transpose() should have cost)(an +Θ when applied to A, in worst case.

Functions add() and sub() can be implemented to run in time)(ban ++Θ , and mult() should run in time

)(ban ⋅+Θ . It will be helpful to include a private function with signature

 private static double dot(List P, List Q)

that computes the vector dot product of two matrix rows represented by Lists P and Q. Use this function

together with function transpose() to help implement mult(). Similar helper functions for the operations

add() and sub() will also be useful.

What to Turn In

Your project will be structured in three files: Sparse.java, Matrix.java, and List.java. The main program,

Sparse, will handle the input and output files and is the client of Matrix, which is itself the client of List.

Note that Sparse is not itself a direct client of List, since it need not call any List operations. You will

also write separate client modules ListTest.java and MatrixTest.java to test the List and Matrix ADTs in

isolation. Also submit a README and a Makefile that creates an executable jar file called Sparse. Thus

seven files in all will be turned in: Sparse.java, Matrix.java, MatrixTest.java, List.java, ListTest.java,

Makefile, and README. Submit these to the assignment name pa3 by the due date. As always start

early and ask questions.

