CMPS 101

Algorithms and Abstract Data Types
 Summer 2006

Asymptotic Growth of Functions

We introduce several types of asymptotic notation which are used to compare the relative performance and efficiency of algorithms. As we've seen in comparing InsertionSort and MergeSort, the asymptotic growth rate of an algorithm gives a simple, and machine independent, characterization of the algorithm's complexity.

Definition Let $g(n)$ be a function. The set $O(g(n))$ is defined as

$$
O(g(n))=\left\{f(n) \mid \exists c>0, \exists n_{0}>0, \forall n \geq n_{0}: 0 \leq f(n) \leq c g(n)\right\} .
$$

In other words, $f(n) \in O(g(n))$ if and only if there exist positive constants c, and n_{0}, such that for all $n \geq n_{0}$, the inequality $0 \leq f(n) \leq c g(n)$ is satisfied. We say that $f(n)$ is $\operatorname{Big} O$ of $g(n)$, or that $g(n)$ is an asymptotic upper bound for $f(n)$.

We often abuse notation slightly by writing $f(n)=O(g(n))$ to mean $f(n) \in O(g(n))$. Actually $f(n) \in O(g(n))$ is itself an abuse of notation. We should really write $f \in O(g)$ since what we have defined is a set of functions, not a set of numbers. The notational convention $O(g(n))$ is useful since it allows us to refer to the set $O\left(n^{3}\right)$ say, without having to introduce a function symbol for the polynomial n^{3}. Observe that if $f(n)=O(g(n))$ then $f(n)$ is asymptotically non-negative, i.e. $f(n)$ is non-negative for all sufficiently large n, and likewise for $g(n)$. We make the blanket assumption from now on that all functions under discussion are asymptotically non-negative.

In practice we will be concerned with integer valued functions of a (positive) integer $n\left(g: \mathbf{Z}^{+} \rightarrow \mathbf{Z}^{+}\right)$. However, in what follows, it is useful to consider n to be a continuous real variable taking positive values and g to be real valued function $\left(g: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}\right)$.

Geometrically $f(n)=O(g(n))$ says:

Example $40 n+100=O\left(n^{2}+10 n+300\right)$. Observe that $0 \leq 40 n+100 \leq n^{2}+10 n+300$ for all $n \geq 20$. Thus we may take $n_{0}=20$ and $c=1$ in the definition.

In fact $a n+b=O\left(c n^{2}+d n+e\right)$ for any constants $a-e$, and more generally $p(n)=O(q(n))$ whenever $p(n)$ and $q(n)$ are polynomials satisfying $\operatorname{deg}(p) \leq \operatorname{deg}(q)$. (See exercises (c) and (d) at the end of this handout.)

Definition Let $g(n)$ be a function and define the set $\Omega(g(n))$ to be

$$
\Omega(g(n))=\left\{f(n) \mid \exists c>0, \exists n_{0}>0, \forall n \geq n_{0}: 0 \leq c g(n) \leq f(n)\right\} .
$$

We say $f(n)$ is big Omega of $g(n)$, and that $g(n)$ is an asymptotic lower bound for $f(n)$. As before we write $f(n)=\Omega(g(n))$ to mean $f(n) \in \Omega(g(n))$. The geometric interpretation is:

Theorem $f(n)=O(g(n))$ if and only if $g(n)=\Omega(f(n))$.

Proof: If $f(n)=O(g(n))$ then there exist positive numbers c_{1}, n_{1} such that $0 \leq f(n) \leq c_{1} g(n)$ for all $n \geq n_{1}$. Let $c_{2}=1 / c_{1}$ and $n_{2}=n_{1}$. Then $0 \leq c_{2} f(n) \leq g(n)$ for all $n \geq n_{2}$, proving $g(n)=\Omega(f(n))$. The converse is similar and we leave it to the reader.

Definition Let $g(n)$ be a function and define the set $\Theta(g(n))=O(g(n)) \cap \Omega(g(n))$. Equivalently

$$
\Theta(g(n))=\left\{f(n) \mid \exists c_{1}>0, \exists c_{2}>0, \exists n_{0}>0, \forall n \geq n_{0}: 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}
$$

We write $f(n)=\Theta(g(n))$ and say the $g(n)$ is an asymptotically tight bound for $f(n)$, or that $f(n)$ and $g(n)$ are asymptotically equivalent. We interpret this geometrically as:

Exercise Prove that $f(n)=\Theta(g(n))$ if and only if $g(n)=\Theta(f(n))$.
Exercise Let $g(n)$ be any function, and let $c>0$. Prove that $c g(n)=O(g(n))$, and $c g(n)=\Omega(g(n))$, whence $\operatorname{cg}(n)=\Theta(g(n))$.

Example Prove that $\sqrt{n+10}=\Theta(\sqrt{n})$.
Proof: According to the definition, we must find positive numbers c_{1}, c_{2}, n_{0}, such that the inequality $0 \leq c_{1} \sqrt{n} \leq \sqrt{n+10} \leq c_{2} \sqrt{n}$ holds for all $n \geq n_{0}$. Pick $c_{1}=1, c_{2}=\sqrt{2}$, and $n_{0}=10$. Then if $n \geq n_{0}$ we have:

$$
\begin{array}{lrl}
& -10 \leq 0 & \text { and } \\
\therefore & -10 \leq n \\
\therefore & -10 \leq(1-1) n & \text { and } \quad 10 \leq(2-1) n \\
\therefore & c_{1}^{2} n \leq n+10 & \text { and } \quad \\
& \text { and } & n+10 \leq\left(c_{2}^{2}-1\right) n \\
\therefore & c_{1}^{2} n \leq n+10 \leq c_{2}^{2} n, \\
\therefore & c_{1} \sqrt{n} \leq \sqrt{n+10} \leq c_{2} \sqrt{n},
\end{array}
$$

as required.
The reader may find our choice of values for the constants c_{1}, c_{2}, n_{0} somewhat mysterious. Adequate values for these constants can usually be obtained by working backwards algebraically from the
inequality to be proved. Notice that in this example there are many valid choices. For instance one checks easily that $c_{1}=\sqrt{1 / 2}, c_{2}=\sqrt{3 / 2}$, and $n_{0}=20$ work equally well.

Exercise Let a, b be real numbers with $b>0$. Prove directly from the definition (as above) that $(n+a)^{b}=\Theta\left(n^{b}\right)$. (By the end of this handout, we will learn a much easier way to prove this.)

Theorem If $h(n)=O(g(n))$ and if $f(n) \leq h(n)$ for all sufficiently large n, then $f(n)=O(g(n))$.
Proof: The above hypotheses say that there exist positive numbers c and n_{1} such that $h(n) \leq \operatorname{cg}(n)$ for all $n \geq n_{1}$, and that there exists positive n_{2} such that $0 \leq f(n) \leq h(n)$ for all $n \geq n_{2}$. (Recall all functions under discussion, in particular $f(n)$, are assumed to be asymptotically non-negative.) Then for all $n \geq n_{0}=\max \left(n_{1}, n_{2}\right)$ we have $0 \leq f(n) \leq c g(n)$, showing that $f(n)=O(g(n))$.

Exercise Prove that if $h_{1}(n) \leq f(n) \leq h_{2}(n)$ for all sufficiently large n, where $h_{1}(n)=\Omega(g(n))$ and $h_{2}(n)=O(g(n))$, then $f(n)=\Theta(g(n))$.

Example Let $k \geq 1$ be a fixed integer. Prove that $\sum_{i=1}^{n} i^{k}=\Theta\left(n^{k+1}\right)$.
Proof: Observe that $\sum_{i=1}^{n} i^{k} \leq \sum_{i=1}^{n} n^{k}=n \cdot n^{k}=n^{k+1}=O\left(n^{k+1}\right)$. Also

$$
\begin{aligned}
\sum_{i=1}^{n} i^{k} & \geq \sum_{i=\lceil n / 2\rceil}^{n} i^{k} \\
& \geq \sum_{i=n n / 2\rceil}^{n}\lceil n / 2\rceil^{k} \\
& =(n-\lceil n / 2\rceil+1) \cdot\lceil n / 2\rceil^{k} \\
& =(\lfloor n / 2\rfloor+1) \cdot\lceil n / 2\rceil^{k} \\
& >(n / 2-1+1) \cdot(n / 2)^{k} \\
& =(1 / 2)^{k+1} n^{k+1} \\
& =\Omega\left(n^{k+1}\right)
\end{aligned}
$$

By the preceding exercise we conclude $\sum_{i=1}^{n} i^{k}=\Theta\left(n^{k+1}\right)$.
When asymptotic notation appears in a formula such as $T(n)=2 T(n / 2)+\Theta(n)$ we interpret $\Theta(n)$ to stand for some anonymous function in the class $\Theta(n)$. For example $3 n^{3}+4 n^{2}-2 n+1=3 n^{3}+\Theta\left(n^{2}\right)$. Here $\Theta\left(n^{2}\right)$ stands for $4 n^{2}-2 n+1$, which belongs to the class $\Theta\left(n^{2}\right)$. The expression $\sum_{i=1}^{n} \Theta(i)$ can be puzzling. Note that $\Theta(1)+\Theta(2)+\Theta(3)+\cdots+\Theta(n)$ is meaningless, since Θ (constant) consists of all functions which are bounded above and below by constants. We interpret $\Theta(i)$ in this expression to stand for a single function $f(i)$ in the class $\Theta(i)$, evaluated at $i=1,2, \ldots, n$.

Exercise Prove that $\sum_{i=1}^{n} \Theta(i)=\Theta\left(n^{2}\right)$. The left hand side stands for a single function $f(i)$ summed for $i=1,2,3, \ldots, n$. By the previous exercise it is sufficient to show that $h_{1}(n) \leq \sum_{i=1}^{n} f(i) \leq h_{2}(n)$ for all sufficiently large n, where $h_{1}(n)=\Omega\left(n^{2}\right)$ and $h_{2}(n)=O\left(n^{2}\right)$.

Definition $o(g(n))=\left\{f(n) \mid \forall c>0, \exists n_{0}>0, \forall n \geq n_{0}: 0 \leq f(n)<c g(n)\right\}$. We say that $g(n)$ is a strict Asymptotic upper bound for $f(n)$ and write $f(n)=o(g(n))$ as before.

Lemma $f(n)=o(g(n))$ if and only if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
Proof: Observe that $f(n)=o(g(n))$ if and only if $\forall c>0, \exists n_{0}>0, \forall n \geq n_{0}: 0 \leq \frac{f(n)}{g(n)}<c$, which is the very definition of the limit statement $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.

Example $\lg (n)=o(n)$ since $\lim _{n \rightarrow \infty} \frac{\lg (n)}{n}=0$. (Apply l'Hopitals rule.)
Example $n^{k}=o\left(b^{n}\right)$ for any $k>0$ and $b>1$ since $\lim _{n \rightarrow \infty} \frac{n^{k}}{b^{n}}=0$. (Apply l'Hopitals rule $\lceil k\rceil$ times.) In other words, any polynomial grows strictly slower than any exponential.

By comparing definitions of $o(g(n))$ and $O(g(n))$ one sees immediately that $o(g(n)) \subseteq O(g(n))$. Also it is easily verified (exercise) that no function can belong to both $o(g(n))$ and $\Omega(g(n))$, so that $o(g(n)) \cap \Omega(g(n))=\varnothing$. Thus $o(g(n)) \subseteq O(g(n))-\Theta(g(n))$.

Definition $\omega(g(n))=\left\{f(n) \mid \forall c>0, \exists n_{0}>0, \forall n \geq n_{0}: 0 \leq c g(n)<f(n)\right\}$. Here we say that $g(n)$ is a strict asymptotic lower bound for $f(n)$ and write $f(n)=\omega(g(n))$.

Exercise Prove that $f(n)=\omega(g(n))$ if and only if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$. Also prove $\omega(g(n)) \cap O(g(n))=\varnothing$, whence $\omega(g(n)) \subseteq \Omega(g(n))-\Theta(g(n))$.

The following picture emerges.

Theorem If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L$, where $0 \leq L<\infty$, then $f(n)=O(g(n))$.
Proof: The limit statement says $\forall \varepsilon>0, \exists n_{0}>0, \forall n \geq n_{0}:\left|\frac{f(n)}{g(n)}-L\right|<\varepsilon$. Since this holds for all ε, we may set $\mathcal{E}=1$. Then there exists a positive n_{0} such that for all $n \geq n_{0}$:

$$
\begin{array}{ll}
& \\
& \left|\frac{f(n)}{g(n)}-L\right|<1 \\
\therefore & -1<\frac{f(n)}{g(n)}-L<1 \\
\therefore & \\
\therefore & \frac{f(n)}{g(n)}<L+1 \\
\therefore &
\end{array} \frac{f(n)<(L+1) \cdot g(n) .}{}
$$

Now taking $c=L+1$ in the definition of O yields $f(n)=O(g(n))$ as claimed.
Theorem If $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L$, where $0<L \leq \infty$, then $f(n)=\Omega(g(n))$.
Proof: The limit statement implies $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=L^{\prime}$, where $L^{\prime}=1 / L$ and hence $0 \leq L^{\prime}<\infty$. By the preceeding theorem $g(n)=O(f(n))$, and therefore $f(n)=\Omega(g(n))$.

Exercise Prove that if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=L$, where $0<L<\infty$, then $f(n)=\Theta(g(n))$.

Although $o(g(n)), \omega(g(n))$, and a certain subset of $\Theta(g(n))$ are characterized by limits, the full sets $O(g(n)), \Omega(g(n))$, and $\Theta(g(n))$ have no such characterization as the following examples show.

Example A Let $g(n)=n$ and $f(n)=(1+\sin (n)) \cdot n$.

Clearly $f(n)=O(g(n))$, but $\frac{f(n)}{g(n)}=1+\sin (n)$, whose limit does not exist, whence $f(n) \neq o(g(n))$. Observe also that $f(n) \neq \Omega(g(n))$ (why?). Therefore $f(n) \in O(g(n))-\Theta(g(n))-o(g(n))$, showing that the containment $o(g(n)) \subseteq O(g(n))-\Theta(g(n))$ is in general strict.

Example B Let $g(n)=n$ and $f(n)=(2+\sin (n)) \cdot n$.

Since $n \leq(2+\sin (n)) \cdot n \leq 3 n$ for all $n \geq 0$, we have $f(n)=\Theta(g(n))$, but $\frac{f(n)}{g(n)}=2+\sin (n)$ whose limit does not exist.

Exercise Find functions $f(n)$ and $g(n)$ such that $f(n) \in \Omega(g(n))-\Theta(g(n))$, but $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$ does not exist (even in the sense of being infinite), so that $f(n) \neq \omega(g(n))$.

These limit theorems and counter-examples can be summarized in the following diagram. Here L denotes the limit $L=\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}$, if it exists.

In spite of the above counter-examples, the preceding limit theorems are a very useful tool for establishing asymptotic comparisons between functions. For instance recall the earlier exercise to show $(n+a)^{b}=\Theta\left(n^{b}\right)$ for real numbers a, and b with $b>0$. The result follows immediately from

$$
\lim _{n \rightarrow \infty} \frac{(n+a)^{b}}{n^{b}}=\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{b}=1^{b}=1,
$$

since $0<1<\infty$.

Exercise Use limits to prove the following:
a. $\quad n \lg (n)=o\left(n^{2}\right)$ (here $\lg (n)$ denotes the base 2 logarithm of n.)
b. $n^{5} 2^{n}=\omega\left(n^{10}\right)$.
c. If $P(n)$ is a polynomial of degree $k \geq 0$, then $P(n)=\Theta\left(n^{k}\right)$.
d. For any positive real numbers α and $\beta: n^{\alpha}=o\left(n^{\beta}\right)$ iff $\alpha<\beta, n^{\alpha}=\Theta\left(n^{\beta}\right)$ iff $\alpha=\beta$, and $n^{\alpha}=\omega\left(n^{\beta}\right)$ iff $\alpha>\beta$.
e. For any positive real numbers a and $b: a^{n}=o\left(b^{n}\right)$ iff $a<b, a^{n}=\Theta\left(b^{n}\right)$ iff $a=b$, and $a^{n}=\omega\left(b^{n}\right)$ iff $a>b$.
f. For any positive real numbers a and $b: \log _{a}(n)=\Theta\left(\log _{b}(n)\right)$.
g. $f(n)+o(f(n))=\Theta(f(n))$.

There is an analogy between the asymptotic comparison of functions $f(n)$ and $g(n)$, and the comparison of real numbers x and y.

$$
\begin{aligned}
& f(n)=O(g(n)) \quad \sim \quad x \leq y \\
& f(n)=\Theta(g(n)) \quad \sim \quad x=y \\
& f(n)=\Omega(g(n)) \quad \sim \quad x \geq y \\
& f(n)=o(g(n)) \quad \sim \quad x<y \\
& f(n)=\omega(g(n)) \quad \sim \quad x>y
\end{aligned}
$$

If both f and g are polynomials of degrees x and y respectively, then the analogy is exact, as can be seen from parts (c) and (d) of the preceding exercise. In general though, the analogy is not exact since there exist pairs of functions which are not comparable.

Exercise Let $f(n)=n^{\sin (n)}$ and $g(n)=\sqrt{n}$. Show that $f(n)$ and $g(n)$ are incomparable, i.e. $f(n)$ is in neither of the classes $O(g(n))$ nor $\Omega(g(n))$.

Exercise Prove the following facts using any preceding exercise, lemma, or example.
a. $\Theta(f(n)) \cdot \Theta(g(n))=\Theta(f(n) \cdot g(n))$. In other words, if $h_{1}(n)=\Theta(f(n))$, and $h_{2}(n)=\Theta(g(n))$, then $h_{1}(n) \cdot h_{2}(n)=\Theta(f(n) \cdot g(n))$.
b. Suppose there exists an $\alpha>0$ such that $f(n) \geq \alpha$ for all sufficiently large n. Then $\lfloor f(n)\rfloor=\Theta(f(n))$, and $\lceil f(n)\rceil=\Theta(f(n))$. (Use the fact that $x-1<\lfloor x\rfloor \leq x \leq\lceil x\rceil<x+1$ for any real number x.) Notice that the existence of such an α is necessary for both conclusions: let $f(n)=1 / n$, then $\lfloor f(n)\rfloor=0$ and $\lceil f(n)\rceil=1$, and neither 0 nor 1 are in the class $\Theta(1 / n)$.

