
 1

CMPS 101
Algorithms and Abstract Data Types
Summer 2006

Some Additional Remarks on ADTs and Modules in ANSI C

Suppose you wish to implement an ADT in C. The particular ADT is unimportant, so let’s just call it a
“Blah” . You should create the following files at minimum: Blah.c, Blah.h, BlahClient.c. The file
Blah.h will contain prototypes for all exported functions which represent ADT operations. It will also
contain the line.

 t ypedef st r uct Bl ah* Bl ahRef ;

This defines Bl ahRef to be a pointer to some struct called Bl ah. The file Blah.c will #include Blah.h,
and will contain definitions for all exported functions, and perhaps definitions for some private
functions and structs. Blah.c will also contain the following typedef statement.

 t ypedef st r uct Bl ah{
 / * code whi ch def i nes f i el ds f or t he Bl ah ADT * /
 } Bl ah;

A client module can then #include Blah.h giving it the ability to declare variables of type BlahRef, as
well as functions which take BlahRef parameters. However, the client cannot dereference this pointer
since the object it points to is not defined in Blah.h. The ADT operations take BlahRef arguments, so
the client does not need to (and is in fact unable to) directly access the struct which these references
point to. Therefore the client can interact with a Blah object only through the exported ADT
operations. This is how information hiding is accomplished in C.

File Blah.c also contains a constructor:

 Bl ahRef newBl ah(. . .) {
 Bl ahRef B;
 / * code whi ch i ni t i al i zes B * /
 r et ur n(B) ;
 }
and a destructor:
 voi d f r eeBl ah(Bl ahRef * pB) {
 i f (pB! =NULL && * pB! =NULL) {
 / * f r ee al l heap memor y associ at ed wi t h * pB * /
 f r ee(* pB) ;
 * pB = NULL;
 }
 }

The destructor is called with the address of a BlahRef as follows:

 Bl ahRef B = newBl ah(. . .) ;
 / * do somet hi ng wi t h B * /
 f r eeBl ah(&B) ;

 2

Function f r eeBl ah must be defined in this way (i.e. taking a pointer to BlahRef rather than a simple
BlahRef) since it is the one operation which changes the reference itself by setting it to NULL.

As in java, all ADT operations must check their own preconditions and exit with a useful error
message when one of them is violated. What should the message say? It should state the module in
which the error occurred (i.e. Blah), the operation in which it occurred, and exactly which precondition
was violated. The purpose of this message is to provide diagnostic assistance to whoever is
programming a client of the Blah ADT. In this class that is of course you the student, but in a the real
world that may well be another programmer, so you must make the error message as helpful as
possible.

In C however there is one more item to check. Each ADT operation should check that the reference
which is it’s main argument is not NULL. This check should come before the checks of preconditions
since any attempt to dereference a NULL reference will result in a segmentation fault.

 voi d some_op(Bl ahRef B) {
 i f (B==NULL) {
 pr i nt f (“ Bl ah Er r or : cal l i ng some_op on NULL Bl ahRef ”) ;
 exi t (1) ;
 }
 / * check pr econdi t i ons and do st uf f * /
 }

The reason this was not necessary in java was because calling an instance method on a null reference
variable automatically causes a NullPointerException to be thrown, which provides some error
tracking to the programmer.

Finally a word about our naming conventions. In some other programming classes you may have used
names like ‘BlahHndl’ or ‘BlahPtr’ instead of ‘BlahRef’ . Is one name better than the other? Of course
not. However, for the sake of consistency, you are required to adhere to the naming conventions
outlined in this document and the previous ADT handout. In particular the file names Blah.c, Blah.h,
BlahClient.c; the function names newBlah, freeBlah, printBlah; and the type names BlahRef, and Blah
are not open to modification. This is not unlike the situation programmers face in industry. Each
company has some set of notational conventions and procedures which everyone follows so that
everybody can easily read and maintain each other’s work.

