CMPS 101

Final Review Problems

Note: all questions on this review are potential final exam problems.

1. Let $G=(V, E)$ be a graph with n vertices, m edges, and k connected components.
a. Show that if G is connected and acyclic, then $m=n-1$. Use induction on either m or n.
b. Show that if G is acyclic, then $m=n-k$. Use part (a).
c. Show that if G is connected, then $m \geq n-1$. Use induction on m.
d. Show that in any graph $G, m \geq n-k$. Use part (c).
2. Let G be a digraph. Determine whether, at any point during a Depth First Search of G, there can exist an edge of the following kind.
a. A tree edge that joins a white vertex to a gray vertex.
b. A back edge that joins a black vertex to a white vertex.
c. A forward edge that joins a gray vertex to a black vertex.
d. A cross edge that joins a black vertex to a gray vertex.
e. A tree edge that joins a gray vertex to a gray vertex.
f. A forward edge that joins a black vertex to a black vertex.
g. A cross edge that joins a white vertex to a black vertex.
h. A back edge that joins a gray vertex to a white vertex.
3. a. State the parenthesis theorem.
b. State the white path theorem.
c. State the max-Heap property.
d. State the min-Heap property.
4. Let G be a directed graph. Prove that if G contains a directed cycle, then $\operatorname{DFS}(G)$ produces a back edge. (Hint: use the white path theorem.)
5. Let T be a binary tree. Let $n(T)$ denote the number of nodes in T, and $h(T)$ denote the height of T. Show that $h(T) \geq\lfloor\lg (n(T))\rfloor$. (Hint: You may use the following fact without proof. For any positive integer k, $\lfloor\lg (2 k+1)\rfloor=\lfloor\lg (2 k)\rfloor$.
6. Re-write the algorithms Heapify, and HeapIncreaseKey from the point of view of a min-Heap, rather than a max-Heap. (In particular, HeapIncreaseKey should be renamed HeapDecreaseKey.)
7. Trace HeapSort on the following arrays. Show the state of both the array and ACBT after each swap.
a. $(9,3,5,4,8,2,5,10,12,2,7,4)$
b. $(5,3,7,1,10,12,19,24,5,7,2,6)$
c. $(9,8,7,6,5,4,3,2,1)$
8. Let G be a directed graph, and let $s, x \in V(G)$. Suppose that after Initialize (G, s) is executed, some sequence of calls to Relax (,) results in $d[x]$ becoming finite. Show that G contains an $s-x$ path of weight $d[x]$. (Use strong induction on the number of calls to Relax(,).)
9. Let G be a directed graph, $s, x \in V(G)$, and suppose $\operatorname{Initialize}(G, s)$ is executed. Show that the inequality $\delta(s, x) \leq d[x]$ is maintained over any sequence of calls to Relax (,). (Use the result of problem 8.)
10. Perform $\operatorname{Dijkstra}(G, s)$ on the weighted digraph below. Trace the d[] and p[] values for each vertex after each call to Relax(,), and draw the resulting Shortest Paths tree.
a. Use $s=1$ as source vertex.
b. Use $s=5$ as source vertex.

