CMPS 101 Midterm 1 Review Problems

- 1. Let $f(n)$ and $g(n)$ be asymptotically non-negative functions which are defined on the positive integers. a. State the definition of $f(n) = O(q(n))$.
	- b. State the definition of $f(n) = \omega(g(n))$
- 2. State whether the following assertions are true or false. If any statements are false, give a related statement that is true.
	- a. $f(n) = O(g(n))$ implies $f(n) = o(g(n)).$ b. $f(n) = O(g(n))$ if and only if $g(n) = \Omega(f(n)).$ c. $f(n) = \Theta(g(n))$ if and only if $\lim_{n \to \infty} (f(n)/g(n)) = L$, where $0 < L < \infty$.
- 3. Prove that $\Theta(f(n)) \cdot \Theta(g(n)) = \Theta(f(n) \cdot g(n))$. In other words, if $h_1(n) = \Theta(f(n))$ and $h_2(n) =$ $\Theta(g(n))$, then $h_1(n) \cdot h_2(n) = \Theta(f(n) \cdot g(n)).$
- 4. Let $f(n)$ and $g(n)$ be asymptotically positive functions (i.e. $f(n) > 0$ and $g(n) > 0$ for all sufficiently large *n*), and suppose $f(n) = \Theta(g(n))$. Does it necessarily follow that $\frac{1}{f(n)} = \Theta\left(\frac{1}{g(n)}\right)$ $\frac{1}{g(n)}$? Either prove this statement, or give a counter-example.
- 5. Give an example of functions $f(n)$ and $g(n)$ such that $f(n) = o(g(n))$ but $log(f(n)) \neq o(log(g(n)))$. (Hint: Consider $n!$ and n^n and use the corollary to Stirling's formula in the handout on common functions.)
- 6. Let $g(n)$ be an asymptotically non-negative function. Prove that $o(g(n)) \cap \Omega(g(n)) = \emptyset$.
- 7. Use limits to prove the following (these are some of the exercises at the end of the asymptotic growth rates handout):
	- a. If $P(n)$ is a polynomial of degree $k \ge 0$, then $P(n) = \Theta(n^k)$.
	- b. For any positive real numbers α and β : $n^{\alpha} = o(n^{\beta})$ iff $\alpha < \beta$, $n^{\alpha} = \Theta(n^{\beta})$ iff $\alpha = \beta$, and $n^{\alpha} =$ $\omega(n^{\beta})$ iff $\alpha > \beta$.
	- c. For any positive real numbers a and b: $a^n = o(b^n)$ iff $a < b$, $a^n = \Theta(b^n)$ iff $a = b$, and $a^n = \omega(b^n)$ iff $a > b$.
	- d. $f(n) + o(f(n)) = \Theta(f(n)).$
- 8. Let $g(n) = n$ and $f(n) = n + \frac{1}{2}$ $\frac{1}{2}n^2(\sin(n) + 1)$. Show that
	- a. $f(n) = \Omega(g(n))$
	- b. $f(n) \neq O(g(n))$
	- c. $\lim_{n \to \infty} \left(\frac{f(n)}{g(n)} \right)$ $\left(\frac{f(n)}{g(n)}\right)$ does not exist, even in the sense of being infinite.

Note: this is the 'Example C' mentioned in the handout on asymptotic growth rates.

9. Use Stirling's formula: $n! = \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)$ $\left(\frac{n}{e}\right)^n \cdot (1 + \Theta(1/n))$, to prove that $\log(n!) = \Theta(n \log n)$.

10. Use Stirling's formula to prove that $\binom{2n}{n}$ $\binom{2n}{n} = \Theta\left(\frac{4^n}{\sqrt{n}}\right)$ $\frac{\pi}{\sqrt{n}}$.

11. Consider the following *sketch* of an algorithm called ProcessArray which performs some unspecified operation on a subarray $A[p \cdots r]$.

> ProcessArray(*A*, *p*, *r*) (Preconditions: $1 \leq p$ and $r \leq$ length[*A*]) 1. Perform 1 basic operation 2. if $p < r$ 3. $q \leftarrow \left| \frac{p+r}{2} \right|$ $\frac{17}{2}$ 4. ProcessArray(A, p, q) 5. ProcessArray $(A, q+1, r)$

- a. Write a recurrence formula for the number $T(n)$ of basic operations performed by this algorithm when called on the full array $A[1 \cdots n]$, i.e. by ProcessArray(*A*, 1, *n*). (Hint: recall our analysis of MergeSort.)
- b. Show that the solution to this recurrence is $T(n) = 2n 1$, whence $T(n) = \Theta(n)$.
- 12. Consider the following algorithm which does nothing but waste time:

WasteTime(*n*) (pre: $n \ge 1$) 1. if $n > 1$ 2. for $i \leftarrow 1$ to n^3 3. waste 2 units of time 4. for $i \leftarrow 1$ to 7 5. WasteTime($\lceil n/2 \rceil$) 6. waste 3 units of time

- a. Write a recurrence formula which gives the amount of time $T(n)$ wasted by this algorithm.
- b. Show that when *n* is an exact power of 2, the solution to this recurrence relation is given by $T(n)$ = $16n^3 - \frac{1}{2}$ $\frac{1}{2} - \frac{31}{2}$ $\frac{31}{2}n^{\lg 7}$, and hence $T(n) = \Theta(n^3)$.
- 13. Define $T(n)$ by the recurrence formula

$$
T(n) = \begin{cases} 1 & 1 \le n < 3 \\ 2T(\lfloor n/3 \rfloor) + 4n & n \ge 3 \end{cases}
$$

Use Induction to show that $\forall n \geq 1$: $T(n) \leq 12n$, and hence $T(n) = O(n)$.

- 14. Prove that all trees on *n* vertices have $n 1$ edges. Do this int two ways.
	- a. Induction on the number of vertices.
	- b. Induction on the number of edges.

15. Define $S(n)$ for $n \in \mathbb{Z}^+$ by the recurrence:

$$
S(n) = \begin{cases} 0 & \text{if } n = 1\\ S(\lceil n/2 \rceil) + 1 & \text{if } n \ge 2 \end{cases}
$$

Use induction to prove that $S(n) \geq lg(n)$ for all $n \geq 1$, and hence $S(n) = \Omega(\lg n)$.

16. Let $f(n)$ be a positive, increasing function that satisfies $f(n/2) = \Theta(f(n))$. Show that

$$
\sum_{i=1}^n f(i) = \Theta(n f(n))
$$

(Hint: Emulate the **Example** on page 4 of the handout on asymptotic growth rates in which it is proved that $\sum_{i=1}^{n} i^{k} = \Theta(n^{k+1})$ for any positive integer *k*.)

- 17. Use the result of the preceding problem to give an alternate proof of $log(n!) = \Theta(n \log(n))$ that does not use Stirling's formula.
- 18. Let $T(n)$ be defined by the recurrence formula

$$
T(n) = \begin{cases} 1 & n = 1 \\ T(|n/2|) + n^2 & n \ge 2 \end{cases}
$$

Show that $\forall n \geq 1$: $T(n) \leq \frac{4}{3}$ $\frac{4}{3}n^2$, and hence $T(n) = O(n^2)$.

** We may not get far enough for this problem. If we do I'll let you know.

19. Define $T(n)$ by the recurrence formula:

$$
T(n) = \begin{cases} 7 & 1 \le n < 3 \\ 2T(\lfloor n/3 \rfloor) + 5 & n \ge 3 \end{cases}
$$

- a. Use the iteration method to determine an exact solution to the above recurrence.
- b. Use the exact solution you found in part (a) to determine an asymptotic solution.
- c. Use the Master Theorem to find an asymptotic solution.