1. Let $f(n)$ and $g(n)$ be asymptotically non-negative functions which are defined on the positive integers.
a. State the definition of $f(n)=O(g(n))$.
b. State the definition of $f(n)=\omega(g(n))$
2. State whether the following assertions are true or false. If any statements are false, give a related statement which is true.
a. $\quad f(n)=O(g(n))$ implies $f(n)=o(g(n))$.
b. $\quad f(n)=O(g(n))$ if and only if $g(n)=\Omega(f(n))$.
c. $\quad f(n)=\Theta(g(n))$ if and only if $\lim _{n \rightarrow \infty}(f(n) / g(n))=L$, where $0<L<\infty$.
3. Prove that $\Theta(f(n)) \cdot \Theta(g(n))=\Theta(f(n) \cdot g(n))$. In other words, if $h_{1}(n)=\Theta(f(n))$ and $h_{2}(n)=\Theta(g(n))$, then $h_{1}(n) \cdot h_{2}(n)=\Theta(f(n) \cdot g(n))$.
4. Use limits to prove the following (these are some of the exercises at the end of the asymptotic growth rates handout):
a. If $P(n)$ is a polynomial of degree $k \geq 0$, then $P(n)=\Theta\left(n^{k}\right)$.
b. For any positive real numbers α and $\beta: n^{\alpha}=o\left(n^{\beta}\right)$ iff $\alpha<\beta, n^{\alpha}=\Theta\left(n^{\beta}\right)$ iff $\alpha=\beta$, and $n^{\alpha}=\omega\left(n^{\beta}\right)$ iff $\alpha>\beta$.
c. For any positive real numbers a and $b: a^{n}=o\left(b^{n}\right)$ iff $a<b, a^{n}=\Theta\left(b^{n}\right)$ iff $a=b$, and $a^{n}=\omega\left(b^{n}\right)$ iff $a>b$.
d. $f(n)+o(f(n))=\Theta(f(n))$.
5. Use Stirling's formula: $n!=\sqrt{2 \pi n} \cdot\left(\frac{n}{e}\right)^{n} \cdot(1+\Theta(1 / n))$, to prove that $\log (n!)=\Theta(n \log n)$.
6. Use Stirling's formula to prove that $\binom{2 n}{n}=\Theta\left(\frac{4^{n}}{\sqrt{n}}\right)$.
7. Consider the following sketch of an algorithm called ProcessArray which performs some unspecified operation on a subarray $A[p \cdots r]$.

ProcessArray $(A, p, r) \quad$ (Preconditions: $1 \leq p$ and $r \leq \operatorname{length}[A]$)

1. Perform 1 basic operation
2. if $p<r$
3. $\quad q \leftarrow\left\lfloor\frac{p+r}{2}\right\rfloor$
4. ProcessArray (A, p, q)
5. ProcessArray $(A, q+1, r)$
a. Write a recurrence formula for the number $T(n)$ of basic operations performed by this algorithm when called on the full array $A[1 \cdots n]$, i.e. by $\operatorname{ProcessArray}(A, 1, n)$. (Hint: recall our analysis of MergeSort.)
b. Show that the solution to this recurrence is $T(n)=2 n-1$.
6. Consider the following algorithm which does nothing but waste time:

WasteTime (n) (pre: $n \geq 1$)

1. if $n>1$
2. for $i \leftarrow 1$ to n^{3}
3. waste 2 units of time
4. for $i \leftarrow 1$ to 7
5. WasteTime ($\lceil n / 2\rceil)$
6. waste 3 units of time

Write a recurrence formula which gives the amount of time $T(n)$ wasted by this algorithm.
9. Prove that all trees on n vertices have $n-1$ edges. Do this by (a) induction on the number of vertices, and (b) by induction on the number of edges.
10. Let $G=(V, E)$ be a connected graph, and let $|V|$ and $|E|$ denote its number of vertices and edges, respectively. Prove that $|E| \geq|V|-1$. (Hint: this is problem 3 on hw4, whose solution will be posted by Tuesday evening.)

