CMPS 101

Spring 2008

Homework Assignment 4

1. (10 Points)

Let $f(n)$ be a positive, increasing function that satisfies $f(n / 2)=\Theta(f(n))$. Show that

$$
\sum_{i=1}^{n} f(i)=\Theta(n f(n))
$$

(Hint: follow the example on page 4 of the handout on asymptotic growth rates.)
2. (10 Points)

Let $T(n)$ be defined by the recurrence formula

$$
T(n)= \begin{cases}1 & n=1 \\ T(\lfloor n / 2\rfloor)+n^{2} & n \geq 2\end{cases}
$$

Show that $\forall n \geq 1: \quad T(n) \leq \frac{4}{3} n^{2}$, and hence $T(n)=O\left(n^{2}\right)$. (Hint: follow example 3 on page 3 of the handout on induction proofs.)
3. (1 Point) (Appendix B. 4 problem 3)

Show that any connected graph $G=(V, E)$ satisfies $|E| \geq|V|-1$, where $|E|$ and $|V|$ denote the number of edges and vertices, respectively.

