CMPS 101

Spring 2008

Homework Assignment 2

1. (1 Point) p.50: 3.1-1

Let $f(n)$ and $g(n)$ be asymptotically non-negative functions. Using the basic definition of Θ notation, prove that $f(n)+g(n)=\Theta(\max (f(n), g(n)))$.
2. (1 Point) p.50: 3.1-3

Explain why the statement "The running time of algorithm A is at least $O\left(n^{2}\right)$ " is meaningless.
3. (2 Points) p. 50: 3.1-4

Determine whether the following statements are true or false.
a. $\left(1\right.$ Point) $2^{n+1}=O\left(2^{n}\right)$
b. $\left(1\right.$ Point) $2^{2 n}=O\left(2^{n}\right)$
4. (6 Points) p.58: 3-2abcdef

Indicate, for each pair of expressions (A, B) in the table below, whether A is O, o, Ω, ω, or Θ of B. Assume that $k \geq 1, \varepsilon>0$, and $c>1$ are constants. Place 'yes' or 'no' in each of the empty cells below, and justify your answers.

	A	B	O	O	Ω	ω	Θ
a. (1 Point)	$\lg ^{k} n$	n^{ε}					
b. (1 Point)	n^{k}	c^{n}					
c. (1 Point)	\sqrt{n}	$n^{\sin n}$					
d. (1 Point)	2^{n}	$2^{n / 2}$					
e. (1 Point)	$n^{\lg c}$	$c^{\lg n}$					
f. (1 Point)	$\lg (n!)$	$\lg \left(n^{n}\right)$					

5. (4 Points) p.58: 3-4cdeh

Let $f(n)$ and $g(n)$ be asymptotically positive functions (i.e. $f(n)>0$ and $g(n)>0$ for sufficiently large n.) Prove or disprove the following statements.
c. (1 Point)

Assume $\lg (g(n)) \geq 1$ and $f(n) \geq 1$ for all sufficiently large n. Then $f(n)=O(g(n))$ implies $\lg (f(n))=O(\lg (g(n)))$.
d. (1 Point)
$f(n)=O(g(n))$ implies $2^{f(n)}=O\left(2^{g(n)}\right)$.
e. (1 Point)
$f(n)=O\left((f(n))^{2}\right)$.
h. (1 Point)

$$
f(n)+o(f(n))=\Theta(f(n)) .
$$

