CMPS 101
Algorithms and Abstract Data Types
Spring 2006

Recurrence Relations

When analyzing the run time of recursive algorithms we are often led to consider functions T(n) which
are defined by recurrence relations of a certain form. A typical example would be

_|c n=1
T(n)_{T(Ln/ZJ)+T(fn/2—D+ dn n>1

where ¢, d are fixed constants. The specific values of these constants are important for determining the
explicit solution to the recurrence. Often however we are only concerned with finding an asymptotic
(upper, lower, or tight) bound on the solution. We call such a bound an asymptotic solution to the
recurrence. In the above example the particular constants ¢ and d have no effect on the asymptotic
solution. We may therefore write our recurrence as

T _ G)(l) n=1
()= {T(|_n/2j)+T(|_n/2—D+ omn n>1

In what follows we'll show that a tight asymptotic solution to the above recurrenceis T(n) = ©(nlogn) .

We will study the following methods for solving recurrences.

e Substitution Method. This method consists of guessing an asymptotic (upper or lower) bound on
the solution, and trying to proveit by induction.

 Recurson Tree Method — Iteration Method. These are two closely related methods for
expressing T(n) as a summation which can then be analyzed. A recursion tree is a graphical
depiction of the entire set of recursive invocations of the function T. The goal of drawing a
recursion tree is to obtain a guess which can then be verified by the more rigorous substitution
method. Iteration consists of repeatedly substituting the recurrence into itself to obtain an iterated
(i.e. summation) expression.

 Master Method. Thisis acookbook method for determining asymptotic solutions to recurrences
of a specific form.

The Substitution M ethod
We begin with the following example.

T(n) = 2 1<n<3

~131(n/3))+n n=3
We will see later that T(n) =©(nlog(n)), but for the time being, suppose that we are able to guess
(somehow) that T(n) =O(nlog(n)). In order to prove this we must find positive numbers ¢ and n, such

that T(n)<cnlog(n) for al n=n,. If we knew appropriate values for these constants, we could prove
this inequality by induction. Our goal then is to determine ¢ and n, such that the induction proof will

work. In what follows it will be useful to take log to mean log,. We begin by mimicking the induction
step (11d) to find c:

Let n>n, and assumefor al k <n that T(k) <cklog(k). In particular, taking k =|n/3] givesus
T(n/3))< [n/3]log(n/3]). Wemust show that T(n) < cnlog(n). Observe

T(n)=3T(n/3])+n (by the recurrence for T)
<3dn/3]log(n/3))+n (by theinduction hypothesis)
<3c(n/3)log(n/3)+n (since [x| < x for al x)
=cn(log(n) -1 +n
=cnlog(n)—cn+n

To obtain T(n) < cnlog(n) we need to have —cn+n<0, whichimplies c>1.

We see that as long as c is chosen to satisfy the constraint c>1, the induction step will go through. It
remains to determine the constant n,. The base step requires T(n,) <cn,log(n,). This can be viewed as
a single constraint on the two parameters ¢ and n,, which indicates that we have some freedom in
choosing them. In other words, the constraints do not uniquely determine both constants, so we must
make some arbitrary choice. Choosing n, =3 isagebraically convenient. Thisyields T(3) <3c, whence

c=T(3)/3. Since T(3)=9 (using the recurrence) we have the constraint c>3. Clearly if we choose
¢ =3, both constraints (c=1 and ¢ = 3) will be satisfied.

It isimportant to note that we have not proved anything yet. Everything we have done up to this point has
been scratch work with the goa of finding appropriate values for ¢ and n,. It remains to present a

complete induction proof of the assertion: T(n) <3nlog(n) for al n=3.

Proof:

|. Since T(3)=3T(3/3])+3=3T(1)+3=32+3=9 and 3[3log(3) =9 the base case reduces to 9<9
which istrue.

[1. Let n>3 and assumefor all k <n that T(k)<3klog(k). Then

T(n)=3T(n/3])+n (by the recurrence for T)
<3M@n/3]log(n/3))+n (by theinduction hypothesis letting k =|n/3])
<9(n/3)log(n/3) +n (since [x| < x for al x)
=3n(log(n) -1 +n
=3nlog(n) —2n
< 3nlog(n)

It now followsthat T(n) <3nlog(n) foral n>3. 111

It is a somewhat more difficult exercise to prove by the same technique that T(n) = Q(nlog(n)), and
therefore T(n) =©(nlog(n)) .

Exercise Determine positive numbers c and n, such that T(n)=cnlog(n) for al n>n,. Hint: Usethe
following facts: (1) ij> x=1, and (2) IogB_sz log,(x) —1 for x=3/2. (With some effort, its possible
to show that c=1/4 and n, =4 work.)

The next example illustrates one complication that can arise in the substitution method. Define T(n) by
the recurrence

- |1 n=1
(n)_{ZT(Lnlzj)ﬂ n>2

We guessthat T(n) =O(n). To prove this guess, we attempt to find positive constants ¢ and n, such that
T(n)<cn foral n>n,. Asbefore we proceed by mimicking the induction step. Let n>n, and assume

for al kin therange n, <k <n that T(k) <ck. In particular, for k=|n/2] we have T(n/2])<dn/2],
and thus

T(n)=2T(n/2])+1 (by the recurrence for T(n))
<2dn/2|+1 (by the induction hypothesis)
<2c(n/2)+1
=cn+l

Our goa is to determine ¢ so that the induction step is feasible. We need to reach the conclusion that
T(n)<cn, and to do this we must determine a number ¢ such that cn+1<cn. But this inequality is

obviousdly false for all positive c. Apparently the induction step cannot be made to work, which might
lead us to believe that our guess is incorrect. Actualy T(n) =O(n) is correct (as can be seen by other

methods), so we take a different approach. Our trick is to subtract a lower order term from the right side
of the inequality we wish to prove. To be precise, we seek positive constants ¢, n,, and b such that
T(n)<cn-b for all n=n,. Observe that this inequality aso implies T(n) =O(n) by a result proved in
the handout on asymptotic growth rates. It may seem counter-intuitive to attempt to prove an inequality
which is stronger than the one that failed, but notice that this strategy allows us to use a stronger induction
hypothesis. Again let n>n, and assume for al k in the range n,<k<n that T(k)<ck-b, and in

particular T((n/2])<c/n/2]-b. Thus

T(n)=2T(n/2])+1 (by the recurrence for T(n))
<2(dn/2|-b)+1 (by the induction hypothesis)
<2(c(n/2)-b)+1 (since | x|< x)
=cn-2b+1

If wetake b=1 then T(n)<cn-b, asdesired. For the basecaselet n, =1. Wemust show T(1) <cl1-1,
whichsays c2T(1)+1=2. Thuswemay set n, =1, c=2, and b=1.

Exercise Useinduction to provethat T(n)<2n-1 for al n>1, whence T(n) =O(n).

Exercise Referring to the previous example, use the substitution method to show that T(n) =Q(n),
whence T(n) =O(n).

The Recursion Tree— Iteration Method

The recursion tree method can be used to generate a good guess for an asymptotic bound on a recurrence.
This guess can then be verified by the substitution method. Since our guess will be verified, we can take
some libertiesin our calculations, such as dropping floors and ceilings or restricting the values of n.

Let us begin with the example

T = /O® 1<n<3
()_{ZT(Ln/3j)+e(n) n=3

We simplify the recurrence by dropping the floor and replacing ©(n) by nto get T(n)=2T(n/3)+n.
Each node in a recursion tree represents one term in the calculation of T(n) obtained by recursively
substituting the expression for T into itself. We construct a sequence of such trees of increasing depths.

0" tree 1% tree 2" tree
T(n) n n
TM/3) T(n/3) (n/3) (n/3)

/NN

T(/3?) TM/3?) TN/3?) Tn/3F?)

3%tree
n
(n/3) (n/3)
(n/3%) (n/3%) (n/3?) (n/3?)

/AN /NN

T(/3%) T/3) T/3F) T/3F) T/3F) T(/3F) T(n/3F) T(n/3)

By summing the nodes in any one of these trees, we obtain an expression for T(n). After k iterations of
this process we reach atree in which all bottom level nodes are T(n/3%) .

k" tree

n
(n/3) (n/3)
% (n/3%) (n/3%) (n/3%)
T(n)Sk) T(n/3") T(n/.3k) ... T(n/é") T(n/Sk)

Note that there are 2' nodes at depth i, each of which has value n/3' (for 0<i <k-1). The sequence of
trees terminates when all bottom level nodes are T (1), i.e. when n/3 =1, which implies k =log,(n).

The number of nodes at this bottom level is therefore 2% =2'°%" =n'*%(@ gymming al nodes in the
final recursion tree gives us the following expression for T(n).

T(n)= fz‘ qn/3) + n¢@ (1)

:n(g(ZIS)‘j + n'%=@ T (1)

n(ﬂ) + n'*%=@ T (1)
1-(2/3)

=3n(L-(2/3") + O(n"=?)

If we seek an asymptotic upper bound we may drop the negative term to obtain T(n) < 3n+0(n'%®).
Since log,;(2) <1 thefirst term dominates, and so we guess: T(n) =O(n) .

Exercise Provethat this guessis correct using the substitution method.

It is sometimes possible to push these computations a little further to obtain an asymptotic estimate
directly, with no simplifying assumptions. We call this the iteration method. We illustrate on the very
same example.

1<n<3
T(n)=

1
_{ZT(Lnlsj)+n n>3

Here we do not assume that n is an exact power of 3, and keep the floor. Substituting this expression into
itself ktimesyields:

T(n)=n+2T(n/3])
=n+2(n/3]+21(|n/3]/3))
=n+2n/3|+2?T(n/3?)
=n+2n/3]+22(n/3 |+ 2T(|n/3? |13))
=n+2n/3]+22|n/3 |+ 2°T(n/3*)

k-

"2 /g |+ 247 (/3)
0

The process must terminate when K is chosen so that 1< Ln/ 3 J <3, whichimplies

1<n/3“<3
0 3<n<3*t
O k<log,(n)<k+1

0 k=[log,(n)]

k-1)

With this value of k we have T(I_n/3kj):1, whence T(n)=> 2 d;n/S'j + 2%, This expression in
i=0

essence converts the computation of T(n) from a recursive algorithm to an iterative algorithm, which is

why we call this the iteration method. This summation can now be used to obtain asymptotic upper and
lower bounds for T(n).

T)=32 dn/a | + 2
o
<32 tfn/3) + 200 (since | x]< x)
i=0
:n§(2/3)‘ + n'%%=?

i=0

_ n(l—(2/3)kj + %@

1-(2/3)

=3n(L-(2/3)")+ n=@

< 3n+n'*%:((dropping the negative term)
=0(n) (since log,(2) <1)

Thus T(n) =0O(n) has been proved. Note that our proof is rigorous since at no point have we made any

simplifying assumptions (such as n being an exact power of 3.) Therefore there is no need to verify
T(n) =0O(n) by another method, such as substitution. In asimilar fashion, one can show T(n) =Q(n).

T(n):izi /3 | + 2¢

k-1)

>3 2((n/3) -1) + 200
i=0
k-1) k-1 1

=N (2/3) - 3.2 + Zp=®
i=0 i=0 2

2-1 + 1w

2-1 2

S - 200 41 4 %nlo%(z)

o+l Lw@
2

=Q(n)

T(n)=n+T(n-2)
=n+(n-2)+T(n-4)
=n+(Nn-2)+(n-4)+T(n-6)

k-1

=Y (n-2i) + T(n-2K)

o

k_

=

k-1
n+2>i+T(n-2K)

kn + 2(@) + T(n-2k)
n + k(k=1) + T(n—2k)

o

0<n-2k<?2
O2ksn<2k+2

Dks2<k+1
Ok=|n/2]

(since | x|>x-1)

(since | x |< x)

(since log,(2) <1)

We've shown T(n) =Q(n), and sinceT (n) =O(n) , we now have T(n) =O(n).

The iteration method can even be used to find exact solutions to some recurrences, as opposed to the
asymptotic solutions we have been satisfied with up to now. For example define the function T(n) by

TO)=T@=5,and T(n)=T(n—-2)+n for n=2. Iterating k times we find

This process must terminate when k is chosen so that either n—2k =0 or n—2k =1, which is where the
recurrence 'bottoms out' so to speak. Thisimplies

Thus if k=|n/2] we have T(n-2k)=5, and therefore the exact solution to the above recurrence is
given by

T(n)=|n/2]th - |n/2]{n/2]-1) + 5
The asymptotic solution is now readily seen to be T(n) = ©(n?).

Exercise Define T(n) by T(1))=0 and T(n)=T(n/2])+1 for n>2. (Recal this was example 5 in the
induction handout.) Use the iteration method to show T(n) =|Ig(n) | for al n, whence T(n) = ©(log(n)).

The Master Method
Thisisamethod for finding (asymptotic) solutions to recurrences of the form

T(n)=aT(n/b)+ f(n)

where a=1, b>1, and the function f(n) is asymptoticaly positive. Here T(n/b) denotes either
T(n/b) or T(n/b]), and it is understood that T(n) =O(1) for some finite set of initial terms. Such a

recurrence describes the run time of a 'divide and conquer' algorithm which divides a problem of size n
into a subproblems, each of size n/b. In thiscontext f(n) represents the cost of doing the dividing and
re-combining.

Master Theorem
Let a=1, b>1, f(n) be asymptotically positive, and let T(n) be defined by T(n)=aT(n/b)+ f(n).
Then we have three cases.

(1) If f(n)=0(n"*®=) for some £ >0, then T(n) = O(n"=*®).

@ If f(n)=0(n"*@), then T(n) = ©(n"*® mog(n)).

3 If f(n)=Q(n»®*) for some £>0, and if af (n/b)<cf(n) for some O<c<1 and for all
sufficiently large n, then T(n) =©(f (n)).

Remarks In each case we compare f (n) to the function n'°®*® | and the solution is determined by which
function is asymptotically larger. In case (1) n'**® is polynomially larger than f(n) and the solution is
in the class G)(n"’gb(a)). In case (3) f(n) is polynomially larger (and an additional regularity condition is
met) so the solution is G)(f (n)). In case (2) the functions are asymptotically equivalent and the solution
is in the class ©(n"*® Mog(n)), which is the same as ©(f(n)dog(n)). To say that n*@ is
polynomially larger than f(n) asin (1), means that f(n) is bounded above by a function which is

smaller than n'°®® by a polynomial factor, namely n° for some £ >0. Note that the conclusion reached
by the master theorem does not change if we replace f(n) by afunction asymptotically equivalent to it.
For this reason the recurrence may simply be given as T(n) =aT(n/b) + G)(f (n)). Notice aso that there

is no mention of initial terms. 1t is part of the content of the master theorem that the initial values of the
recurrence do not effect it’s asymptotic solution.

Examples
Let T(n)=8T(n/2)+n°. Then a=8, b=2, log,(a) =3, and hence f(n)=n° :G)(n"’gb(a)), sowearein

case (2). Therefore T(n) =0(n®log(n)).

Now let T(n)=5T(n/4)+n. Here a=5, b=4, log, (a) =1.609...>1. Let £=log,(5) -1 sothat £ >0,
and f(n) =Nn= O(n|094(5)—£). Thereforewe arein Case(l) and T(n) — O(nlog4(5)).

Next consider T(n) =5T(n/4)+n®. Again a=5, b=4, so0 log,(a) =1.609...<2. Let £=2-log,(5),
sothat £>0, and f(n)=n?= Q(n"’g“(s)”), and therefore case (3) seems to apply. In this case we must
check the regularity condition: 5f (n/4) <cf(n) for some 0<c<1 and al sufficiently large n. This
inequality say 5(n/4)*<cn?, i.e. (5/16)n”* <cn®. Thus we may choose any c satisfying 5/16<c<1.
Since the regularity condition is satisfied we have T(n) = ©(n?)

Note that even though this is called the ‘Master Theorem’ the three cases do not cover all possibilities.
There is a gap between cases (1) and (2) when n'®® s larger than f(n), but not polynomially larger.
For example consider the recurrence T(n) =2T(n/2) + n/lg(n). Observe that log,(2) =1, and check
that n/lg(n) = w(n"*), whence n/lg(n) # O(nl‘f) for any £>0, and therefore we are not in case (1).
But aso n/lg(n) =o(nlog(n)), so that n/lg(n) # ®(nlog(n)), and neither are we in case (2). Similar

comments hold for cases (2) and (3). In addition, it is possible that the regularity condition in case (3)
faillsto hold.

