
CMPS 101
Algor ithms and Abstract Data Types
Spr ing 2006

Recurrence Relations

When analyzing the run time of recursive algorithms we are often led to consider functions)(nT which
are defined by recurrence relations of a certain form. A typical example would be

� �() � �()�
�
�

>++
=

=
1 2/2/

1
)(

ndnnTnT

nc
nT

where c, d are fixed constants. The specific values of these constants are important for determining the
explicit solution to the recurrence. Often however we are only concerned with finding an asymptotic
(upper, lower, or tight) bound on the solution. We call such a bound an asymptotic solution to the
recurrence. In the above example the particular constants c and d have no effect on the asymptotic
solution. We may therefore write our recurrence as

� �() � �()�
�
�

>Θ++
=Θ

=
1)(2/2/

1)1(
)(

nnnTnT

n
nT

In what follows we'll show that a tight asymptotic solution to the above recurrence is)log()(nnnT Θ= .

We will study the following methods for solving recurrences.

• Substitution Method. This method consists of guessing an asymptotic (upper or lower) bound on
the solution, and trying to prove it by induction.

• Recursion Tree Method – I teration Method. These are two closely related methods for
expressing)(nT as a summation which can then be analyzed. A recursion tree is a graphical
depiction of the entire set of recursive invocations of the function T. The goal of drawing a
recursion tree is to obtain a guess which can then be verified by the more rigorous substitution
method. Iteration consists of repeatedly substituting the recurrence into itself to obtain an iterated
(i.e. summation) expression.

• Master Method. This is a cookbook method for determining asymptotic solutions to recurrences
of a specific form.

The Substitution Method
We begin with the following example.

� �()�
�
�

≥+
<≤

=
3 3/3

31 2
)(

nnnT

n
nT

We will see later that))log(()(nnnT Θ= , but for the time being, suppose that we are able to guess

(somehow) that))log(()(nnOnT = . In order to prove this we must find positive numbers c and 0n such

that)log()(ncnnT ≤ for all 0nn ≥ . If we knew appropriate values for these constants, we could prove

this inequality by induction. Our goal then is to determine c and 0n such that the induction proof will

work. In what follows it will be useful to take log to mean 3log . We begin by mimicking the induction

step (IId) to find c:

Let 0nn > and assume for all nk < that)log()(kckkT ≤ . In particular, taking � �3/nk = gives us

� �() � � � �()3/log3/3/ nncnT ≤ . We must show that)log()(ncnnT ≤ . Observe

� �() nnTnT += 3/3)((by the recurrence for T)

 � � � �() nnnc +≤ 3/log3/3 (by the induction hypothesis)

 nnnc +≤)3/log()3/(3 (since � � xx ≤ for all x)

 nncn +−=)1)(log(
 ncnncn +−=)log(

To obtain)log()(ncnnT ≤ we need to have 0≤+− ncn , which implies 1≥c .

We see that as long as c is chosen to satisfy the constraint 1≥c , the induction step will go through. It
remains to determine the constant 0n . The base step requires)log()(000 ncnnT ≤ . This can be viewed as

a single constraint on the two parameters c and 0n , which indicates that we have some freedom in

choosing them. In other words, the constraints do not uniquely determine both constants, so we must
make some arbitrary choice. Choosing 30 =n is algebraically convenient. This yields cT 3)3(≤ , whence

3/)3(Tc ≥ . Since 9)3(=T (using the recurrence) we have the constraint 3≥c . Clearly if we choose
3=c , both constraints (1≥c and 3≥c) will be satisfied.

It is important to note that we have not proved anything yet. Everything we have done up to this point has
been scratch work with the goal of finding appropriate values for c and 0n . It remains to present a

complete induction proof of the assertion:)log(3)(nnnT ≤ for all 3≥n .

Proof:
I. Since � �() 93233)1(333/33)3(=+⋅=+=+= TTT and 9)3log(33 =⋅ the base case reduces to 99 ≤

which is true.
II. Let 3>n and assume for all nk < that)log(3)(kkkT ≤ . Then

� �() nnTnT += 3/3)((by the recurrence for T)

 � � � �() nnn +⋅≤ 3/log3/33 (by the induction hypothesis letting � �3/nk =)

 nnn +≤)3/log()3/(9 (since � � xx ≤ for all x)

 nnn +−=)1)(log(3
 nnn 2)log(3 −=
)log(3 nn≤

It now follows that)log(3)(nnnT ≤ for all 3≥n . ///

It is a somewhat more difficult exercise to prove by the same technique that))log(()(nnnT Ω= , and
therefore))log(()(nnnT Θ= .

Exercise Determine positive numbers c and 0n such that)log()(ncnnT ≥ for all 0nn ≥ . Hint: Use the

following facts: (1) � � 1−> xx , and (2) � � 1)(loglog 33 −≥ xx for 2/3≥x . (With some effort, its possible

to show that 4/1=c and 40 =n work.)

The next example illustrates one complication that can arise in the substitution method. Define)(nT by
the recurrence

� �()�
�
�

≥+
=

=
2 12/2

1 1
)(

nnT

n
nT

We guess that)()(nOnT = . To prove this guess, we attempt to find positive constants c and 0n such that

cnnT ≤)(for all 0nn ≥ . As before we proceed by mimicking the induction step. Let 0nn > and assume

for all k in the range nkn <≤0 that ckkT ≤)(. In particular, for � �2/nk = we have � �() � �2/2/ ncnT ≤ ,

and thus

� �() 12/2)(+= nTnT (by the recurrence for)(nT)

 � � 12/2 +≤ nc (by the induction hypothesis)

 1)2/(2 +≤ nc
 1+= cn

Our goal is to determine c so that the induction step is feasible. We need to reach the conclusion that

cnnT ≤)(, and to do this we must determine a number c such that cncn ≤+1 . But this inequality is
obviously false for all positive c. Apparently the induction step cannot be made to work, which might
lead us to believe that our guess is incorrect. Actually)()(nOnT = is correct (as can be seen by other
methods), so we take a different approach. Our trick is to subtract a lower order term from the right side
of the inequality we wish to prove. To be precise, we seek positive constants c, 0n , and b such that

bcnnT −≤)(for all 0nn ≥ . Observe that this inequality also implies)()(nOnT = by a result proved in

the handout on asymptotic growth rates. It may seem counter-intuitive to attempt to prove an inequality
which is stronger than the one that failed, but notice that this strategy allows us to use a stronger induction
hypothesis. Again let 0nn > and assume for all k in the range nkn <≤0 that bckkT −≤)(, and in

particular � �() � � bncnT −≤ 2/2/ . Thus

� �() 12/2)(+= nTnT (by the recurrence for)(nT)

 � �() 12/2 +−≤ bnc (by the induction hypothesis)

 () 1)2/(2 +−≤ bnc (since � � xx ≤)

 12 +−= bcn

If we take 1=b then bcnnT −≤)(, as desired. For the base case let 10 =n . We must show 11)1(−⋅≤ cT ,

which says 21)1(=+≥ Tc . Thus we may set 10 =n , 2=c , and 1=b .

Exercise Use induction to prove that 12)(−≤ nnT for all 1≥n , whence)()(nOnT = .

Exercise Referring to the previous example, use the substitution method to show that)()(nnT Ω= ,
whence)()(nnT Θ= .

The Recursion Tree – I teration Method
The recursion tree method can be used to generate a good guess for an asymptotic bound on a recurrence.
This guess can then be verified by the substitution method. Since our guess will be verified, we can take
some liberties in our calculations, such as dropping floors and ceilings or restricting the values of n.

Let us begin with the example

� �()�
�
�

≥Θ+
<≤Θ

=
3)(3/2

31)1(
)(

nnnT

n
nT

We simplify the recurrence by dropping the floor and replacing)(nΘ by n to get nnTnT +=)3/(2)(.
Each node in a recursion tree represents one term in the calculation of)(nT obtained by recursively
substituting the expression for T into itself. We construct a sequence of such trees of increasing depths.

 0th tree 1st tree 2nd tree
)(nT n n

)3/(nT)3/(nT)3/(n)3/(n

)3/(2nT)3/(2nT)3/(2nT)3/(2nT

 3rd tree
 n

)3/(n)3/(n

)3/(2n)3/(2n)3/(2n)3/(2n

)3/(3nT)3/(3nT)3/(3nT)3/(3nT)3/(3nT)3/(3nT)3/(3nT)3/(3nT

By summing the nodes in any one of these trees, we obtain an expression for)(nT . After k iterations of

this process we reach a tree in which all bottom level nodes are)3/(knT .

 k th tree
 n

)3/(n)3/(n

)3/(2n)3/(2n)3/(2n)3/(2n

 � � � � �
 � � � � �
)3/(knT)3/(knT)3/(knT ……………………………………..………)3/(knT)3/(knT

Note that there are i2 nodes at depth i, each of which has value in 3/ (for 10 −≤≤ ki). The sequence of
trees terminates when all bottom level nodes are)1(T , i.e. when 13/ =kn , which implies)(log3 nk = .

The number of nodes at this bottom level is therefore)2(log)(log 3322 nnk == . Summing all nodes in the
final recursion tree gives us the following expression for)(nT .

)1()3/(2)()2(log
1

0

3 TnnnT
k

i

ii ⋅+⋅=�
−

=

)1()3/2()2(log
1

0

3 Tnn
k

i

i ⋅+	

�
�

�= �
−

=

)1(
)3/2(1

)3/2(1)2(log3 Tnn
k

⋅+		

�
��

�

−
−=

 ())()3/2(13)2(log3nn k Θ+−=

If we seek an asymptotic upper bound we may drop the negative term to obtain)(3)()2(log3nnnT Θ+≤ .

Since 1)2(log3 < the first term dominates, and so we guess:)()(nOnT = .

Exercise Prove that this guess is correct using the substitution method.

It is sometimes possible to push these computations a little further to obtain an asymptotic estimate
directly, with no simplifying assumptions. We call this the iteration method. We illustrate on the very
same example.

� �()�
�
�

≥+
<≤

=
3 3/2

31 1
)(

nnnT

n
nT

Here we do not assume that n is an exact power of 3, and keep the floor. Substituting this expression into
itself k times yields:

� �()3/2)(nTnnT +=

 � � � �� �()()3/3/23/2 nTnn ++=

 � � � �()22 3/23/2 nTnn ++=

 � � � � � �� �()()3/3/23/23/2 222 nTnnn +++=

 � � � � � �()3322 3/23/23/2 nTnnn +++=

 �
 �

 � � � �()kk
k

i

ii nTn 3/2 3/2
1

0

+⋅=�
−

=

The process must terminate when k is chosen so that � � 33/1 <≤ kn , which implies

 33/1 <≤ kn

133 +<≤∴ kk n
1)(log 3 +<≤∴ knk

� �)(log 3 nk =∴

With this value of k we have � �() 13/ =knT , whence � � k
k

i

ii nnT 2 3/2)(
1

0

+⋅=�
−

=

. This expression in

essence converts the computation of)(nT from a recursive algorithm to an iterative algorithm, which is
why we call this the iteration method. This summation can now be used to obtain asymptotic upper and
lower bounds for)(nT .

� � k
k

i

ii nnT 2 3/2)(
1

0

+⋅=�
−

=

 ())(log
1

0

32 3/2 n
k

i

ii n +⋅≤�
−

=

 (since � � xx ≤)

)2(log
1

0

3)3/2(nn
k

i

i += �
−

=

)2(log3
)3/2(1

)3/2(1
 nn

k

+		

�
��

�

−
−=

 ())2(log3)3/2(13 nn k +−=

)2(log33 nn +≤ (dropping the negative term)
)(nO= (since 1)2(log3 <)

Thus)()(nOnT = has been proved. Note that our proof is rigorous since at no point have we made any
simplifying assumptions (such as n being an exact power of 3.) Therefore there is no need to verify

)()(nOnT = by another method, such as substitution. In a similar fashion, one can show)()(nnT Ω= .

� � k
k

i

ii nnT 2 3/2)(
1

0

+⋅=�
−

=

 () 1)(log
1

0

32 1)3/(2 −
−

=
� +−≥ n
k

i

ii n (since � � 1−> xx)

)2(log
1

0

1

0

3

2

1
 2)3/2(nn

k

i

i
k

i

i +−= ��
−

=

−

=

)2(log
k

3

2

1

12

12
 nn +

−
−−≥

)2(log)(log 33

2

1
 1 2 nn n ++−≥ (since � � xx ≤)

)2(log3

2

1
 1 nn −+=

)(nΩ= (since 1)2(log3 <)

We've shown)()(nnT Ω= , and since)()(nOnT = , we now have)()(nnT Θ= .

The iteration method can even be used to find exact solutions to some recurrences, as opposed to the
asymptotic solutions we have been satisfied with up to now. For example define the function)(nT by

5)1()0(== TT , and nnTnT +−=)2()(for 2≥n . Iterating k times we find

)2()(−+= nTnnT
)4()2(−+−+= nTnn
)6()4()2(−+−+−+= nTnnn

 �
 �

)2()2(
1

0

knTin
k

i

−+−=�
−

=

)2(2
1

0

1

0

knTin
k

i

k

i

−++= ��
−

=

−

=

)2(
2

)1(
2 knT

kk
kn −+	

�
�

� −+=

)2()1(knTkkkn −+−+=

This process must terminate when k is chosen so that either 02 =− kn or 12 =− kn , which is where the
recurrence 'bottoms out' so to speak. This implies

 220 <−≤ kn
222 +<≤∴ knk

1
2

+<≤∴ k
n

k

� �2/nk =∴

Thus if � �2/nk = we have 5)2(=− knT , and therefore the exact solution to the above recurrence is

given by

� � � � � �() 5 12/2/ 2/)(+−⋅−⋅= nnnnnT

The asymptotic solution is now readily seen to be)()(2nnT Θ= .

Exercise Define)(nT by 0)1(=T and � �() 12/)(+= nTnT for 2≥n . (Recall this was example 5 in the

induction handout.) Use the iteration method to show � �)lg()(nnT = for all n, whence))(log()(nnT Θ= .

The Master Method
This is a method for finding (asymptotic) solutions to recurrences of the form

)()/()(nfbnaTnT +=

where 1≥a , 1>b , and the function)(nf is asymptotically positive. Here)/(bnT denotes either

� �)/(bnT or � �)/(bnT , and it is understood that)1()(Θ=nT for some finite set of initial terms. Such a

recurrence describes the run time of a 'divide and conquer' algorithm which divides a problem of size n
into a subproblems, each of size bn / . In this context)(nf represents the cost of doing the dividing and
re-combining.

Master Theorem
Let 1≥a , 1>b ,)(nf be asymptotically positive, and let)(nT be defined by)()/()(nfbnaTnT += .
Then we have three cases:

(1) If ()ε−=)(log)(abnOnf for some 0>ε , then ())(log)(abnnT Θ= .

(2) If ())(log)(abnnf Θ= , then ())log()()(log nnnT ab ⋅Θ= .

(3) If ()ε+Ω=)(log)(abnnf for some 0>ε , and if)()/(ncfbnaf ≤ for some 10 << c and for all

sufficiently large n, then ())()(nfnT Θ= .

Remarks In each case we compare)(nf to the function)(log abn , and the solution is determined by which

function is asymptotically larger. In case (1))(log abn is polynomially larger than)(nf and the solution is

in the class ())(log abnΘ . In case (3))(nf is polynomially larger (and an additional regularity condition is

met) so the solution is ())(nfΘ . In case (2) the functions are asymptotically equivalent and the solution

is in the class ())log()(log nn ab ⋅Θ , which is the same as ())log()(nnf ⋅Θ . To say that)(log abn is
polynomially larger than)(nf as in (1), means that)(nf is bounded above by a function which is

smaller than)(log abn by a polynomial factor, namely εn for some 0>ε . Note that the conclusion reached
by the master theorem does not change if we replace)(nf by a function asymptotically equivalent to it.

For this reason the recurrence may simply be given as ())()/()(nfbnaTnT Θ+= . Notice also that there
is no mention of initial terms. It is part of the content of the master theorem that the initial values of the
recurrence do not effect it’s asymptotic solution.

Examples
Let 3)2/(8)(nnTnT += . Then 8=a , 2=b , 3)(log =ab , and hence ())(log3)(abnnnf Θ== , so we are in

case (2). Therefore))log(()(3 nnnT Θ= .

Now let nnTnT +=)4/(5)(. Here 5=a , 4=b , 1...609.1)(log >=ab . Let 1)5(log4 −=ε so that 0>ε ,

and ()ε−==)5(log4)(nOnnf . Therefore we are in case (1) and ())5(log4)(nnT Θ= .

Next consider 2)4/(5)(nnTnT += . Again 5=a , 4=b , so 2...609.1)(log <=ab . Let)5(log2 4−=ε ,

so that 0>ε , and ()ε+Ω==)5(log2 4)(nnnf , and therefore case (3) seems to apply. In this case we must
check the regularity condition:)()4/(5 ncfnf ≤ for some 10 << c and all sufficiently large n. This

inequality say 22)4/(5 cnn ≤ , i.e. 22)16/5(cnn ≤ . Thus we may choose any c satisfying 116/5 <≤ c .

Since the regularity condition is satisfied we have)()(2nnT Θ=

Note that even though this is called the ‘Master Theorem’ the three cases do not cover all possibilities.
There is a gap between cases (1) and (2) when)(log abn is larger than)(nf , but not polynomially larger.

For example consider the recurrence)lg(/)2/(2)(nnnTnT += . Observe that 1)2(log2 = , and check

that)()lg(/ 1 εω −= nnn , whence ()ε−≠ 1)lg(/ nOnn for any 0>ε , and therefore we are not in case (1).
But also))log(()lg(/ nnonn = , so that))log(()lg(/ nnnn Θ≠ , and neither are we in case (2). Similar
comments hold for cases (2) and (3). In addition, it is possible that the regularity condition in case (3)
fails to hold.

