
CMPS 101
Algorithms and Abstract Data Types
Spring 2006

Programming Assignment 4
Due Wednesday May 31, 10:00 pm

In this assignment you will build a Graph module in C, implement Depth First Search (DFS), and use
your Graph module to find the strongly connected components of a directed graph. Begin by reading
sections 22.3-22.5 in the text.

A directed graph (or digraph)),(EVG = is said to be strongly connected if for every pair of vertices

Vvu ∈, , u is reachable from v and v is reachable from u. Most directed graphs are not strongly
connected. In general we say a subset VX ⊆ is strongly connected if every vertex in X is reachable from
every other vertex in X. A strongly connected subset which is maximal with respect to this property is
called a strongly connected component of G. In other words, VX ⊆ is a strongly connected component
of G if and only if (i) X is strongly connected, and (ii) the addition of one more vertex to X would create a
subset which is not strongly connected.

Example
 1 2 3 4

 G

 5 6 7 8

It’s easy to see that there are 4 strong components of G: }5 ,2 ,1{1 =C , }4 ,3{2 =C , }7 ,6{3 =C , and

}8{4 =C .

To find the strong components of a digraph G first call)(DFS G , and as vertices are finished, place them
on a stack. When this is complete the stack stores the vertices ordered by decreasing finish times. Next
compute the transpose TG of G, which is obtained by reversing the directions on all edges of G. Finally,
run)(DFS TG , but in the main loop (lines 5-7) process vertices by decreasing finish times. (Here we
mean finish times from the first call to DFS.) This is accomplished by simply popping vertices off the
stack in loop 5-7 of DFS. When this process is complete the trees in the resulting DFS forest constitute
the strong components of G. (Note the strong components of G are identical to the strong components of

TG .) See the algorithm (Strongly-Connected-Components) and proof of correctness in section 22.5 of
the text.

In this assignment you will create a graph module in C which represents a directed graph by an array of
adjacency lists. Your graph module will, among other things, provide the capability of running DFS, and
computing the transpose of a directed graph. DFS requires that vertices posses attributes for color (white,
black, grey), discover time, finish time, and parent. Here is a catalog of required functions and their
prototypes:

/* Constructors-Destructors */
GraphRef newGraph(int n);
void freeGraph(GraphRef *G);

/* Access functions */
int getOrder(GraphRef G);
int getParent(GraphRef G, int u); /* Pre: 1<=u<=n=getOrder(G) */
int getDiscover(GraphRef G, int u); /* Pre: 1<=u<=n=getOrder(G) */
int getFinish(GraphRef G, int u); /* Pre: 1<=u<=n=getOrder(G) */

/* Manipulation procedures */
void addDirectedEdge(GraphRef G, int u, int v); /* Pre: 1<=u<=n, 1<=v<=n */
void DFS(GraphRef G, ListRef S); /* Pre: getLength(S)==getOrder(G) */

/* Other Functions */
GraphRef transpose(GraphRef G);
GraphRef copyGraph(GraphRef G);
void printGraph(FILE* out , GraphRef G);

Function newGraph will return a handle to a new graph object containing n vertices and no edges.
freeGraph frees all heap memory associated with a graph object and sets it’s GraphRef argument to
NULL. Function getOrder returns the number of vertices in the graph G, while functions getParent,
getDiscover, and getFinish return the appropriate field values for the given vertex. Note that the parent of
a vertex may be NIL. Also the discover and finish times of vertices will be undefined before DFS is
called. You must #define constant macros for NIL and UNDEF which represent those values, and place
the definitions in the file Graph.h. The function addDirectedEdge will add vertex v to the adjacency list
of vertex u (but not u to the adjacency list of v), thus establishing a directed edge from u to v.

The function DFS will perform the depth first search algorithm on G. The List S has two purposes in this
function. First it defines the order in which vertices will be processed in the main loop (5-7) of DFS.
Second, when DFS is complete, it will store the vertices in order of decreasing finish times (hence S can
be considered to be a stack). The List S can therefore be classified as both an input and an output
parameter to function DFS. Obviously you should utilize the List module you created in pa2 to
implement S and the adjacency lists which represent G. DFS has two preconditions: getLength(S) = n,
and S contains some permutation of the integers { 1, 2, ..., n} where n = getOrder(G). You are required to
check the first condition but not the second.

Recall that DFS calls the recursive algorithm Visit (DFS-Visit in the text), and uses a variable called time
which is static over all recursive calls to Visit. There are three possible approaches to implementing Visit.
You can define Visit as a top level function in your graph implementation file (which is private and
therefore not exported), and let time be a static variable whose scope is the entire file. This option has the
drawback that other functions in the same file would have access to the global time variable. The second
approach is to let time be a local variable in DFS, then pass the address of time to Visit, making it an
input-output variable to Visit. This is perhaps the simplest option, and is recommended. The third
approach is to again let time be a local variable in DFS, then nest the definition of Visit within the
definition of DFS. Since time is local to DFS, it’s scope includes the defining block for Visit, and is
therefore static throughout all recursive calls to Visit. This may be tricky if you’ re not used to nesting
function definitions since there are issues of scope to deal with. Try experimenting with a few simple
examples to make sure you know how it works. Note that although nesting function definitions is not a
standard feature of ANSI C, and is not supported by many compilers, it is supported by the gcc compiler
(even with the –ansi flag). If you plan to develop your project on another platform, this approach may not
be possible.

Function transpose returns a handle to a new graph object representing the transpose of G, and copyGraph
returns a handle to a new graph which is a copy of G. Both transpose and copyGraph could be considered
constructors since they create new graph objects. Function printGraph prints the adjacency list
representation of G to the file pointed to by out.

The client of your Graph module will be called FindComponents. It will take two command line
arguments giving the names of the input and output files respectively:

% FindComponents infile outfile

See the example FileIO.c on the webpage to learn how to read from and write to files in C. The main
program FindComponents will do the following:

• Read the input file.
• Assemble a graph object G using newGraph and addDirectedEdge.
• Print the adjacency list representation of G to the output file.
• Run DFS on G and TG , processing the vertices in the second call by decreasing finish times from

the first call.
• Determine the strong components of G.
• Print the strong components of G to the output file.

After the second call to DFS, the List parameter S can be used to determine the strong components of G. I
suggest you trace the algorithm Strongly-Connected-Components (p.554) on several small examples,
keeping track of the List S, to see how this can be done. Input and output file formats are illustrated in the
following example, which corresponds to the directed graph on the first page of this handout:

Input:
8
1 2
2 3
2 5
2 6
3 4
3 7
4 3
4 8
5 1
5 6
6 7
7 6
7 8
8 8
0 0

Output:
Adjacency list representation of G:
1: 2
2: 3 5 6
3: 4 7
4: 3 8
5: 1 6
6: 7
7: 6 8
8: 8

G contains 4 strongly connected components:
Component 1: 1 5 2
Component 2: 3 4
Component 3: 7 6
Component 4: 8

Observe that the input file format is very similar to that of pa3. The first line gives the number of vertices
in the graph, subsequent lines specify directed edges, and input is terminated by the ‘dummy’ line 0 0.
You have basically the same two design options for your Graph module that you did in pa3. On the one
hand the struct Graph may contain array fields for the parent, discover, finish, and color attributes, as well
as an array of ListRefs for the adjacency lists. In each array, index i pertains to the vertex with label i.
(Again I recommend that arrays be built to begin indexing at 1, i.e. just waste the zeroth element.) The
second option would be to define a private inner struct called Vertex (analogous to Node in List) which
encapsulates several attributes, such as parent, discover, finish, and color. Then Graph would contain
arrays of Vertex and ListRef variables. Just as before, either option is acceptable.

You are required to submit the following files: README, Makefile, List.c, List.h, ListClient.c, Graph.h,
Graph.c, GraphClient.c, FindComponents.c. As usual README contains a catalog of submitted files and
any special notes to the grader. Makefile should be capable of making the executables ListClient,

GraphClient, FindComponents, and should contain a clean utility which removes all object files. The
grader will be taking a second look at your List module so be sure to fix any errors he pointed out in pa2.
Graph.c and Graph.h are the implementation and interface files respectively for your Graph module.
GraphClient.c is used for testing of your Graph module. FindComponents.c implements the top level
client and main program for this project. By now everyone knows that points are deducted both for
neglecting to include required files, and for submitting additional unwanted files, but let me say it
anyway: do not submit binary files of any kind.

Note that FindComponents needs to pass a List to the function DFS, so it is also a client of the List
module and must therefore #include the file List.h. Also note that the Graph module will be exporting a
function which takes a ListRef argument (namely DFS). Therefore any file which #includes Graph.h
(namely Graph.c, GraphClient.c, and FindComponents.c) must have the preprocessor directive #include
for List.h appear before that for Graph.h, since the compiler must see the typedef which defines ListRef
before it sees the prototype for function DFS().

Below is a Makefile which you may alter as you see fit:

Makefile for Graph ADT and related modules.
make makes FindComponents
make GraphClient makes GraphClient
make ListClient makes ListClient
make clean removes all object and executable files

FindComponents : FindComponents.o Graph.o List.o
 gcc -o FindComponents FindComponents.o Graph.o List.o

GraphClient : GraphClient.o Graph.o List.o
 gcc -o GraphClient GraphClient.o Graph.o List.o

ListClient : ListClient.o List.o
 gcc -o ListClient ListClient.o List.o

FindComponents.o : FindComponents.c Graph.h List.h
 gcc -c -ansi -Wall FindComponents.c

GraphClient.o : GraphClient.c Graph.h List.h
 gcc -c -ansi -Wall GraphClient.c

ListClient.o : ListClient.c List.h
 gcc -c -ansi -Wall ListClient.c

Graph.o : Graph.c Graph.h List.h
 gcc -c -ansi -Wall Graph.c

List.o : List.c List.h
 gcc -c -ansi -Wall List.c

clean :
 rm -f FindComponents GraphClient ListClient FindComponents.o \
 GraphClient.o ListClient.o Graph.o List.o

Start Early and ask questions if anything is not completely clear.

