
 1

CMPS 101
Algorithms and Abstract Data Types
Spring 2006

Programming Assignment 1
Due Friday April 21, 10:00 pm

Introduction
The purpose of this assignment is threefold: to make sure everyone is up to speed with Java, to practice
modularity and ADTs, and to implement an Integer List ADT which will be used (perhaps with minor
modifications) in future programming assignments. You should therefore test your ADT carefully, even
though all of its features may not be used here.

In this project you will write a Java program which performs shuffles (i.e. permutations) on lists of
integers. Observe that there are many ways to shuffle a given list of integers. For example the list (1 2 3)
can be shuffled in 6 distinct ways: (1 2 3), (1 3 2), (2 1 3), (2 3 1), (3 1 2), (3 2 1). In general a list of
length n has !n arrangements or permutations. Formally, a permutation of a set S is a bijection (i.e. a one-
to-one onto mapping) from S to S. From now on we take S to be the set } , ,2 ,1{ nS �= . One way to
denote a permutation of S is to simply list its elements twice, side by side, showing the image of each
element under the permutation. For instance, let 5=n and write

��
�

�
��
�

�
=

25413

54321
σ

to stand for the mapping SS →:σ which takes 31→ , 12 → , 43→ , 54 → , and 25→ . Such a
mapping can be composed with itself to obtain another bijection 2σσσ =� from S to S. One may verify
in this case that

��
�

�
��
�

�
=

12534

543212σ .

Composing again we see ��
�

�
��
�

�
=

31245

543213σ , ��
�

�
��
�

�
=

43152

543214σ , and ��
�

�
��
�

�
=

54321

543215σ .

Observe that 5σ is the identity mapping, which takes ii → for all Si ∈ . The order of a permutation σ
is the smallest positive integer k such that identity=kσ . Thus in the above example, the order of σ is 5.
In this project you will compute the order of a permutation by applying it repeatedly to a list (i.e. shuffling
the list) until the list is brought back into its original order.

Our notation for permutations is still somewhat cumbersome. If we fix an ordering of S (such as
increasing numerical order), then we can leave out the top row entirely. The permutation σ in the
preceding example is then written as)25413(=σ . In this way any arrangement of the elements
of S is understood to denote the permutation which takes the standard arrangement (i.e. the one in
increasing order) into the given arrangement. We will call this method for specifying permutations the
arrangement representation.

There is yet another way to specify a permutation of } , ,1{ nS �= as a list of n integers. In this notation a
list is interpreted to be a set of instructions for transforming the standard arrangement of S into a given

 2

arrangement. To distinguish this representation from the arrangement representation, we will surround
the list with square brackets [] rather than round brackets (). We refer to this scheme as the operator
representation of a permutation, and illustrate with the following example. The list [1 2 1] instructs us to
place elements from the standard arrangement (1 2 3) into an initially empty list () in three steps:

1. Place element 1 in position 1: (1)
2. Place element 2 in position 2: (1 2)
3. Place element 3 in position 1: (3 1 2)

The result is the arrangement (3 1 2). Similarly [1 1 3] applied to (1 2 3) gives (2 1 3). Below are the 6
permutations of S = { 1, 2, 3} written in both operator and arrangement representation.

[1 2 3] (1 2 3)
[1 2 2] (1 3 2)
[1 1 3] (2 1 3)
[1 1 2] (2 3 1)
[1 2 1] (3 1 2)
[1 1 1] (3 2 1)

Observe that in the operator representation of a permutation, the integer at position i must be in the range
1 to i, since it is literally an instruction to insert something into a list of length 1−i . Thus [1 3 2] is not a
valid operator representation of any permutation. (What would it say? Starting with an empty list, insert
1 into position 1 to get the list (1), then insert 2 into position 3 to get …? But inserting anything into the
list (1) results in a list of length 2, which therefore has no position 3.) One nice thing about the operator
representation of a permutation is that it can be easily applied to any list of length n, not just the standard
arrangement of S. For instance [1 2 2] applied to (a b c) gives (a c b), and [1 1 1] applied to (x y z) gives
(z y x). The reader is urged at this point to write out all 24 permutations of S = { 1, 2, 3, 4} in both
representations. Also check that the permutation σ from the preceding example, which was given in
arrangement representation as)25413(=σ , has the operator representation []43121=σ .

Program Operation
Your program will be structured in two files: a client module called Shuffle.java, and a List ADT module
called List.java. Each file will contain one top level class, Shuffle and List, respectively. The client
Shuffle will use List variables in two ways. On the one hand, a List will represent a permutation in
operator representation. Such a List will itself be made to operate on a second List by splicing and dicing
according to the ‘ instructions’ in the first List. These shuffling operations will be performed in the client
by calling the methods in the List module. Shuffle will be invoked at the command line by doing:
Shuf f l e i nput _f i l e out put _f i l e. Notice that one does not type j ava Shuf f l e at the command
line. A Makefile is included at the end of this handout which places all .class files for this project in an
executable jar file called Shuffle, making it possible to leave out j ava when invoking the program.

The input file will contain a number of permutations (of various sizes) in operator representation. For
each such permutation your program will do the following.

1. Read the permutation from the input file and store it in a List P.
2. Initialize a List L consisting of the integers (1 2 … n), where n is the length P.
3. Shuffle L once by applying the permutation P. The list L now gives the arrangement

representation of the permutation. Print L to the output file.

 3

4. Continue to shuffle L by applying the operator P until L returns to the original standard order
(1 2 … n). Count the number of shuffles performed, including the one in step (3). This count
gives the order of the permutation. Print this count to the output file.

It is strongly recommended that Shuffle.java contain a function with the prototype

st at i c voi d shuf f l e(Li st L, Li st P) ;

which performs one shuffle on the List L by applying the operator permutation P. This function will
splice and dice the List L by applying the operations exported by the List ADT module List.java,
described below. Note that the input Lists L and P must be of the same length, and P should be a valid
operator representation of a permutation. These conditions should be checked by function shuffle().

File Formats
Go to the course website and follow the ‘examples’ link to see the program FileIO.java, which illustrates
how to do file input and output. The first line of the input file will contain a single integer N, giving the
number of permutations in the input file. The next N lines of the input file each contain exactly one
permutation in operator representation, given as a space separated list of integers. Your program will read
the first line, parse the integer N, then enter a loop which reads the next N lines. Each iteration of the loop
will execute steps 1-4 above. The output file will contain exactly N lines giving the arrangement
representation of each permutation, along with its order. These formats are illustrated below.

Input File:
6
1 1 2 2 3 5 4 3 8
1 2 1 3 4
1 2 3 3 5 4 7 2
1 2 1
1 1 1 4 2 6 2
1 1 1 1 1

Output File:
(2 4 8 5 7 3 6 9 1) or der =9
(3 1 4 5 2) or der =5
(1 8 2 4 6 3 5 7) or der =6
(3 1 2) or der =3
(3 7 5 2 1 4 6) or der =12
(5 4 3 2 1) or der =2

You may assume that your program will be tested only on correctly formatted input files. In particular,
lines 2 through 1+N will contain only the valid operator representation of a permutation. You may also
assume that the number of permutations in a file will not exceed 1000, and that each permutation will be
of length at most 100.

List ADT Specifications
Your List ADT for this project will be a double ended queue with current-position marker. Thus the set
of “mathematical structures” for this ADT consists of all finite sequences of integers, in which one integer
may be distinguished as the current element. (Note that it is a valid state for this ADT to have no element
be current. When in such a state, the current marker is considered to be undefined.) The current marker is
used by the client to traverse Lists. Your List module will support the following operations:

/ / Const r uct or s
Li st () / / Cr eat es new empt y Li st .

/ / Access f unct i ons
bool ean i sEmpt y() / / Ret ur ns t r ue i f t hi s Li st i s empt y, f al se ot her wi se.
bool ean of f End() / / Ret ur ns t r ue i f cur r ent i s undef i ned.
bool ean at Fi r st () / / Ret ur ns t r ue i f f i r s t el ement i s cur r ent . Pr e: ! i sEmpt y() .
bool ean at Last () / / Ret ur ns t r ue i f l ast el ement i s cur r ent . Pr e: ! i sEmpt y() .
i nt get Fi r st () / / Ret ur ns f i r s t el ement . Pr e: ! i sEmpt y() .

 4

i nt get Last () / / Ret ur ns l ast el ement . Pr e: ! i sEmpt y() .
i nt get Cur r ent () / / Ret ur ns cur r ent el ement . Pr e: ! i sEmpt y() , ! of f End() .
i nt get Lengt h() / / Ret ur ns l engt h of t hi s Li st .
bool ean equal s(Li st L) / / Ret ur ns t r ue i f t hi s Li st has same el ement s as L i n t he
 / / same or der . I gnor es t he cur r ent mar ker i n bot h Li st s.

/ / Mani pul at i on Pr ocedur es
voi d makeEmpt y() / / Set s t hi s Li st t o t he empt y st at e. Post : i sEmpt y() .
voi d moveFi r st () / / Set s cur r ent mar ker t o f i r s t el ement .
 / / Pr e: ! i sEmpt y() ; Post : ! of f End() .
voi d moveLast () / / Set s cur r ent mar ker t o l ast el ement
 / / Pr e ! i sEmpt y() ; Post : ! of f End() .
voi d movePr ev() / / Moves cur r ent mar ker one st ep t owar d f i r s t el ement .
 / / Pr e: ! i sEmpt y() , ! of f End() .
voi d moveNext () / / Moves cur r ent mar ker one st ep t owar d l ast el ement .
 / / Pr e: ! i sEmpt y() , ! of f End() .
voi d i nser t Bef or eFi r st (i nt dat a) / / I nser t s new el ement bef or e f i r s t el ement .
 / / Post : ! i sEmpt y() .
voi d i nser t Af t er Last (i nt dat a) / / I nser t s new el ement af t er l ast el ement .
 / / Post : ! i sEmpt y() .
voi d i nser t Bef or eCur r ent (i nt dat a) / / I nser t s new el ement bef or e cur r ent el ement .
 / / Pr e: ! i sEmpt y() , ! of f End() .
voi d i nser t Af t er Cur r ent (i nt dat a) / / I nser t s new el ement af t er cur r ent el ement .
 / / Pr e: ! i sEmpt y() , ! of f End() .
voi d del et eFi r st () / / Del et es f i r s t el ement . Pr e: ! i sEmpt y() .
voi d del et eLast () / / Del et es l ast el ement . Pr e: ! i sEmpt y() .
voi d del et eCur r ent () / / Del et es cur r ent el ement .
 / / Pr e: ! i sEmpt y() , ! of f End() ; Post : of f End()

/ / Ot her met hods
Li st copy() / / Ret ur ns a new l i s t whi ch cont ai ns t he same el ement s as t hi s Li st , and
 / / i n t he same or der . The cur r ent mar ker i n t he new l i s t i s undef i ned,
 / / r egar dl ess of t he st at e of t he cur r ent mar ker i n t hi s l i s t . The st at e
 / / of t hi s l i s t i s unchanged.
publ i c St r i ng t oSt r i ng() / / Over r i des Obj ect ' s t oSt r i ng met hod and r et ur ns a st r i ng
 / / r epr esent at i on of t hi s Li st consi st i ng of a space
 / / separ at ed l i s t of i nt eger s.
publ i c st at i c voi d mai n(St r i ng[] ar gs) / / Used as a t est dr i ver f or t he Li st c l ass.

The above operations are required for full credit, although it is not expected that all will be used by the
client module in this project. The following operation is optional, and may come in handy in some future
assignment:

Li st cat (Li st L) / / Ret ur ns a new Li st whi ch i s t he concat enat i on of t hi s l i s t
 / / f ol l owed by L. The cur r ent mar ker i n t he new l i s t i s undef i ned,
 / / r egar dl ess of t he st at es of t he cur r ent mar ker s i n t he t wo l i s t s.
 / / The st at es of t he t wo Li st s ar e unchanged.

Your List class should contain a private Node class which encapsulates one List element. This private
class should contain fields for an int (the value stored at that node), a Node (the previous element in the
list), and another Node (the next element in the list). It should also define an appropriate constructor, as
well as a t oSt r i ng() method. The List class should contain private fields of type Node which refer to
the first, last, and current Nodes in the List.

Makefile
The following Makefile creates an executable jar file called Shuffle. Place it in a directory containing
List.java and Shuffle.java, then type gmake to compile your program.

 5

Makef i l e f or CMPS 101 pa1 Spr i ng 2006.

MAI NCLASS = Shuf f l e
JAVAC = j avac
JAVASRC = $(wi l dcar d * . j ava)
SOURCES = $(JAVASRC) makef i l e README
CLASSES = $(pat subst %. j ava, %. cl ass, $(JAVASRC))
JARCLASSES = $(pat subst %. cl ass, %* . cl ass, $(CLASSES))
JARFI LE = $(MAI NCLASS)

al l : $(JARFI LE)

$(JARFI LE) : $(CLASSES)
 echo Mai n- cl ass: $(MAI NCLASS) > Mani f est
 j ar cvf m $(JARFI LE) Mani f est $(JARCLASSES)
 chmod +x $(JARFI LE)
 r m Mani f est

%. cl ass: %. j ava
 $(JAVAC) $<

c l ean:
 r m * . c l ass $(JARFI LE)

Note that this Makefile will compile all .java files in your current working directory. Also be aware that
if you are using the bash shell and you type make (instead of gmake), this makefile may not work
properly. To be safe always use gmake. You may of course alter this Makefile as you see fit to perform
other tasks (such as submit), but the Makefile your turn in must make an executable jar called Shuffle, and
must include a clean utility.

You must also submit a README file for this (and every) assignment describing the files created for the
assignment, their purposes and relationships, along with any special notes to myself and the grader.
README is essentially a table of contents for the project. Each file you turn in must begin with your
name, user id, and assignment name. Thus, for this project you are to submit four files in all: List.java,
Shuffle.java, Makefile, and README.

Advice
Start early and ask questions if anything is unclear. It is helpful to write simple test programs to make
sure you understand each part of the problem. The main method in your List class is required because it
is much easier to debug your List ADT in isolation before you use it in the Shuffle class. You should first
design and build your List ADT, test it thoroughly, and only then start coding your Shuffle class.
Information on how to turn in your program is posted on the webpage.

