CMPS 101
Algorithms and Abstract Data Types
Spring 2006

Programming Assignment 1
Due Friday April 21, 10:00 pm

Introduction

The purpose of this assignment is threefold: to make sure everyone is up to speed with Java, to practice
modularity and ADTSs, and to implement an Integer List ADT which will be used (perhaps with minor
modifications) in future programming assignments. Y ou should therefore test your ADT carefully, even
though all of its features may not be used here.

In this project you will write a Java program which performs shuffles (i.e. permutations) on lists of
integers. Observe that there are many ways to shuffle a given list of integers. For examplethelist (12 3)
can be shuffled in 6 distinct ways. (12 3),(132),(213),(231),(312),(321). Ingenerd alist of
length n has n! arrangements or permutations. Formally, a permutation of aset Sisabijection (i.e. aone-
to-one onto mapping) from Sto S From now on we take Sto be the set S={1,2,...,n}. One way to

denote a permutation of Sis to simply list its elements twice, side by side, showing the image of each
element under the permutation. For instance, let n=5 and write

1 2 3 45
g =
3145 2

to stand for the mapping 0:S - S which takes 13, 2,1, 354, 4.5, and 5- 2. Such a
mapping can be composed with itself to obtain another bijection oo o =¢? from Sto S One may verify

in this case that
o7 = 1 2 3 45
4 352 1)

. . , (12345 , (12345 . (12345
Composing again we see g° = , o' = ,and o’ = :
54 2 1 3 2 51 3 4 12 3 45

Observe that ¢® is the identity mapping, which takes i — i for al i0S. The order of a permutation o
is the smallest positive integer k such that o* =identity. Thusin the above example, the order of o is5.

In this project you will compute the order of a permutation by applying it repeatedly to alist (i.e. shuffling
the list) until the list isbrought back into its original order.

Our notation for permutations is still somewhat cumbersome. If we fix an ordering of S (such as
increasing numerical order), then we can leave out the top row entirely. The permutation ¢ in the
preceding example isthen writtenas 0=(3 1 4 5 2). Inthisway any arrangement of the elements

of S is understood to denote the permutation which takes the standard arrangement (i.e. the one in
increasing order) into the given arrangement. We will call this method for specifying permutations the
arrangement representation.

Thereis yet another way to specify a permutation of S={1,...,n} asalist of nintegers. In thisnotation a
list is interpreted to be a set of instructions for transforming the standard arrangement of Sinto a given

1

arrangement. To distinguish this representation from the arrangement representation, we will surround
the list with square brackets [] rather than round brackets (). We refer to this scheme as the operator
representation of a permutation, and illustrate with the following example. Thelist [1 2 1] instructs us to
place elements from the standard arrangement (1 2 3) into an initially empty list () in three steps:

1. Placeelement 1inposition 1: (1)
2. Placeelement 2 in position 2: (1 2)
3. Placeelement 3inposition1: (312)

The result is the arrangement (3 1 2). Similarly [1 1 3] applied to (1 2 3) gives (2 1 3). Below arethe 6
permutations of S={1, 2, 3} written in both operator and arrangement representation.

[123] (123)
[122] (132
[113] (213)
[112] (231)
[121] (312
[111] (321)

Observe that in the operator representation of a permutation, the integer at position i must be in the range
1toi, sinceitisliteraly an instruction to insert something into alist of length i —=1. Thus[1 3 2] isnot a
valid operator representation of any permutation. (What would it say? Starting with an empty list, insert
1 into position 1 to get the list (1), then insert 2 into position 3 to get ...? But inserting anything into the
list (1) resultsin alist of length 2, which therefore has no position 3.) One nice thing about the operator
representation of a permutation is that it can be easily applied to any list of length n, not just the standard
arrangement of S For instance [1 2 2] applied to (ab c) gives (ac b), and [1 1 1] applied to (x y z) gives
(z'y xX). The reader is urged at this point to write out all 24 permutations of S = {1, 2, 3, 4} in both
representations. Also check that the permutation o from the preceding example, which was given in
arrangement representationas o=(3 1 4 5 2),hasthe operator representation o=[1 2 1 3 4].

Program Operation

Y our program will be structured in two files: a client module called Shufflejava, and aList ADT module
called Listjava. Each file will contain one top level class, Shuffle and List, respectively. The client
Shuffle will use List variables in two ways. On the one hand, a List will represent a permutation in
operator representation. Such a List will itself be made to operate on a second List by splicing and dicing
according to the ‘instructions’ in the first List. These shuffling operations will be performed in the client
by calling the methods in the List module. Shuffle will be invoked at the command line by doing:
Shuffle input_file output_file. Noticethat onedoesnottypej ava Shuf f | e a the command
line. A Makefileisincluded at the end of this handout which places all .class files for this project in an
executable jar file called Shuffle, making it possible to leave out j ava when invoking the program.

The input file will contain a number of permutations (of various sizes) in operator representation. For
each such permutation your program will do the following.

1. Read the permutation from the input file and storeit inaList P.

2. InitializealList L consisting of theintegers (1 2 ... n), where nisthe length P.

3. Shuffle L once by applying the permutation P. The list L now gives the arrangement
representation of the permutation. Print L to the output file.

4. Continue to shuffle L by applying the operator P until L returns to the origina standard order
(12 ... n). Countthe number of shuffles performed, including the one in step (3). This count
givesthe order of the permutation. Print this count to the output file.

It is strongly recommended that Shuffle.java contain a function with the prototype

static void shuffle(List L, List P);

which performs one shuffle on the List L by applying the operator permutation P. This function will
splice and dice the List L by applying the operations exported by the List ADT module List.java,
described below. Note that the input Lists L and P must be of the same length, and P should be a valid
operator representation of a permutation. These conditions should be checked by function shuffle().

File Formats

Go to the course website and follow the ‘examples’ link to see the program FilelO.java, which illustrates
how to do file input and output. The first line of the input file will contain a single integer N, giving the
number of permutations in the input file. The next N lines of the input file each contain exactly one
permutation in operator representation, given as a space separated list of integers. Your program will read
thefirst line, parse the integer N, then enter aloop which reads the next N lines. Each iteration of the loop
will execute steps 1-4 above. The output file will contain exactly N lines giving the arrangement
representation of each permutation, along with its order. These formats are illustrated below.

Input File: Output File:

6 (248573691 order=9
112235438 (3145 2) order=5
121314 (18246 357) order=6
12335472 (31 2) order=3

121 (3752146) order=12
1114262 (5432 1) order=2
11111

You may assume that your program will be tested only on correctly formatted input files. In particular,
lines 2 through N +1 will contain only the valid operator representation of a permutation. You may aso
assume that the number of permutations in afile will not exceed 1000, and that each permutation will be
of length at most 100.

List ADT Specifications

Your List ADT for this project will be a double ended queue with current-position marker. Thus the set
of “mathematical structures’ for this ADT consists of all finite sequences of integers, in which one integer
may be distinguished as the current element. (Note that it isavalid state for this ADT to have no element
be current. When in such a state, the current marker is considered to be undefined.) The current marker is
used by the client to traverse Lists. Your List module will support the following operations:

/1 Constructors
List() // Creates new enpty List.

/1 Access functions

bool ean i sEnpty() // Returns true if this List is enpty, fal se otherw se.

bool ean of fEnd() // Returns true if current is undefined.

bool ean atFirst() // Returns true if first elenent is current. Pre: !isEnpty().
bool ean atlLast() // Returns true if last elenent is current. Pre: !isEnpty().
int getFirst() // Returns first element. Pre: !isEnpty().

int getLast() // Returns last elenent. Pre: !isEnmpty().

int getCurrent() // Returns current elenment. Pre: !isEnpty(), !'offEnd().

int getLength() // Returns length of this List.

bool ean equal s(List L) // Returns true if this List has sanme elenments as L in the
/1 sanme order. Ilgnores the current marker in both Lists.

/1 Mani pul ati on Procedures
voi d makeEnpty() // Sets this List to the enpty state. Post: isEnpty().
void moveFirst() // Sets current marker to first el ement.

/1l Pre: liskEnpty(); Post: !offEnd().
voi d nmovelLast() // Sets current narker to | ast el enent

/1l Pre 'isEnpty(); Post: !offEnd().
voi d movePrev() // Moves current marker one step toward first el ement.

/1 Pre: lisEmpty(), !offEnd().
voi d moveNext () // Moves current nmarker one step toward | ast el enment.

/1l Pre: lisEmpty(), !'offEnd().
void insertBeforeFirst(int data) // Inserts new el ement before first el enent.

/1 Post: lisEnpty().
void insertAfterLast(int data) // Inserts new elenment after |ast el enment.
/1 Post: liskEnpty().
void insertBeforeCurrent(int data) // Inserts new el enent before current el enent.
/1l Pre: lisEmpty(), !offEnd().
void insertAfterCurrent(int data) // Inserts new el enment after current el enent.
/1 Pre: lisEmpty(), !offEnd().
void deleteFirst() // Deletes first elenment. Pre: !isEmpty().
void deleteLast() // Deletes last elenent. Pre: !isEnmpty().
void del eteCurrent() // Deletes current el enent.
/1 Pre: liskEnpty(), !'offEnd(); Post: offEnd()

/1 Other methods
Li st copy() // Returns a new |list which contains the sane elenents as this List, and
/1 in the sane order. The current marker in the new list is undefined,
/1 regardless of the state of the current marker in this list. The state
/1 of this list is unchanged.
public String toString() // Overrides Cbject's toString method and returns a string
/'l representation of this List consisting of a space
/1 separated |ist of integers.
public static void main(String[] args) // Used as a test driver for the List class.

The above operations are required for full credit, although it is not expected that al will be used by the
client module in this project. The following operation is optional, and may come in handy in some future
assignment:

List cat(List L) // Returns a new List which is the concatenation of this |ist
/1 followed by L. The current marker in the new list is undefined,
/'l regardless of the states of the current markers in the two lists.
/1 The states of the two Lists are unchanged.

Your List class should contain a private Node class which encapsulates one List element. This private
class should contain fields for an int (the value stored at that node), a Node (the previous element in the
list), and another Node (the next element in the list). It should also define an appropriate constructor, as
well asat oString() method. The List class should contain private fields of type Node which refer to
thefirst, last, and current Nodes in the List.

M akefile
The following Makefile creates an executable jar file called Shuffle. Place it in a directory containing
List.javaand Shufflejava, then type gnake to compile your program.

Makefile for CMPS 101 pal Spring 2006.

MAI NCLASS = Shuffle

JAVAC = javac

JAVASRC = $(wi ldcard *.java)

SOURCES = $(JAVASRC) nmkefil e README

CLASSES = $(patsubst %java, %class, $(JAVASRC))
JARCLASSES = $(patsubst %class, %.class, $(CLASSES))
JARFILE = $(MAI NCLASS)

all: $(JARFI LE)

$(JARFI LE): $(CLASSES)
echo Main-cl ass: $(MAI NCLASS) > Mani f est
jar cvfm $(JARFI LE) Manifest $(JARCLASSES)
chrmod +x $(JARFI LE)
rm Mani f est

% class: % java
$(JAVAC) $<

cl ean:
rm*.class $(JARFI LE)

Note that this Makefile will compile all .javafilesin your current working directory. Also be aware that
if you are using the bash shell and you type nake (instead of gnmake), this makefile may not work
properly. To be safe aways use gmake. You may of course ater this Makefile as you see fit to perform
other tasks (such as submit), but the Makefile your turn in must make an executable jar called Shuffle, and
must include a clean utility.

You must also submit a README file for this (and every) assignment describing the files created for the
assignment, their purposes and relationships, along with any special notes to myself and the grader.
README is essentially a table of contents for the project. Each file you turn in must begin with your
name, user id, and assignment name. Thus, for this project you are to submit four filesin all: List.java,
Shufflejava, Makefile, and README.

Advice

Start early and ask questions if anything is unclear. It is helpful to write simple test programs to make
sure you understand each part of the problem. The main method in your List class is required because it
is much easier to debug your List ADT inisolation before you use it in the Shuffle class. You should first
design and build your List ADT, test it thoroughly, and only then start coding your Shuffle class.
Information on how to turn in your program is posted on the webpage.

