CMPS 101

Fall 2010
Homework Assignment 3

1. (1 Point) The last exercise in the handout entitled Some Common Functions.

Use Stirling's formula to prove that $\binom{2 n}{n}=\Theta\left(\frac{4^{n}}{\sqrt{n}}\right)$.
2. (2 Points) (Exercise 1 from the induction handout)

Prove that for all $n \geq 1: \sum_{i=1}^{n} i^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$. Do this twice:
a. (1 Point) using form IIa of the induction step.
b. (1 Point) using form IIb of the induction step.
3. (1 Point) Exercise 2 from the induction handout)

Define $S(n)$ for $n \in Z^{+}$by the recurrence:

$$
S(n)=\left\{\begin{array}{ccc}
0 & \text { if } n=1 \\
S([n / 2\rceil)+1 & \text { if } n \geq 2
\end{array}\right.
$$

Prove that $S(n) \geq \lg (n)$ for all $n \geq 1$, and hence $S(n)=\Omega(\lg n)$.
4. (1 Point)

Let $f(n)$ be a positive, increasing function that satisfies $f(n / 2)=\Theta(f(n))$. Show that

$$
\sum_{i=1}^{n} f(i)=\Theta(n f(n))
$$

(Hint: follow the Example on page 4 of the handout on asymptotic growth rates in which it is proved that $\sum_{i=1}^{n} i^{k}=\Theta\left(n^{k+1}\right)$ for any positive integer k.)
5. (1 Point)

Let $T(n)$ be defined by the recurrence formula

$$
T(n)= \begin{cases}1 & n=1 \\ T(\lfloor n / 2\rfloor)+n^{2} & n \geq 2\end{cases}
$$

Show that $\forall n \geq 1: T(n) \leq \frac{4}{3} n^{2}$, and hence $T(n)=O\left(n^{2}\right)$. (Hint: follow Example 3 on page 3 of the handout on induction proofs.)

