
 
1 

CMPS 101 
Algorithms and Abstract Data Types 
Graph Theory 
 
Graphs 
A graph G consists of an ordered pair of sets ),( EVG =  where ∅≠V , and } of subsets-2{)2( VVE =⊆ , 
i.e. E consists of unordered pairs of elements of V.  We call )(GVV =  the vertex set, and )(GEE =  the 
edge set of G.  In this handout we consider only graphs in which both the vertex set and edge set are 
finite.  An edge {x, y}, denoted xy or yx, is said to join  its two end vertices x and y, and these ends are 
said to be incident with the edge xy.  Two vertices are called adjacent if they are joined by an edge, and 
two edges are said to be adjacent if they have a common end vertex.  A graph will usually be depicted as 
a collection of points in the plane (vertices), together with line segments (edges) joining the points.  
 
Example 1  }6 ,5 ,4 ,3 ,2 ,1{)( =GV , }56 ,45 ,36 ,35 ,26 ,25 ,24 ,23 ,14 ,12{)( =GE  
 
                                                           1                  2                   3 
 
                                                                                              
                                                                                              
 
 
                                                           4                   5                  6 
 
Two graphs 1G  and 2G  are said to me isomorphic if there exists a bijection )()(: 21 GVGV →φ  such that 

for any )(, 1GVyx ∈ , the pair xy is an edge of 1G  if and only if the pair )()( yx φφ  is an edge of 2G .  In 

other words, φ  must preserve all incidence relations amongst the vertices and edges in 1G .  We write 

21 GG ≅  to mean that 1G  and 2G  are isomorphic.   
 
Example 2  Let 1G  be the graph from the previous example, and define 2G  by } , , , , ,{)( 2 fedcbaGV = , 

} , , , , , , , , ,{)( 2 efdecfcebfbebdbcadabGE = .  Define a map )()(: 21 GVGV →φ  by ,3 ,2 ,1 cba →→→  

fed →→→ 6  ,5  ,4 .  Clearly φ  is an isomorphism.  2G  can be drawn as  
 
                                                            a                  d  
 
                                                                                c  
 
 
                                                                                f  
                                                          b                                           e  
 
Isomorphic graphs are indistinguishable as far as graph theory is concerned.  In fact, graph theory can be 
defined to be the study of those properties of graphs that are preserved by isomorphism.  Thus a graph is 
not a picture, in spite of the way we visualize it.  Instead a graph is a combinatorial object consisting of 
two abstract sets, together with some incidence data relating those sets. 
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If )(GVx∈  the degree of x, denoted )deg(x , is the number of edges incident with vertex x, or 
equivalently, the number of vertices adjacent to x.  Referring to Example 1 above we see that 2)1deg( = , 

5)2deg( = , and 3)6deg( = .  The degree sequence of a graph consists of it’s vertex degrees arranged in 
increasing order.  The graph in Example 1 has degree sequence (2, 3, 3, 3, 4, 5).  Observe that the graph in 
Example 2 has the same degree sequence.  Clearly if )()(: 21 GVGV →φ  is an isomorphism, then 

)deg())(deg( xx =φ  for any )( 1GVx∈ , and hence isomorphic graphs have the same degree sequence.  
Observe that  

|)(|2)deg(
)(

GEx
GVx

=∑
∈

 

 
since each edge, having two distinct ends, contributes 2 to the sum on the left.  This is sometimes known 
as the Handshake Lemma for it says that the number of hands shaken at a party is exactly twice the 
number of handshakes.   
 
Exercise  Show that the number vertices of odd degree in any graph must be even.  (Hint: suppose G 
contains an odd number of odd vertices.  Argue that the left hand side of the above equation is then odd, 
while the right hand side is clearly even.)   
 
Given )(, GVyx ∈  (not necessarily adjacent), a walk from x to y , or an x-y walk, is a sequence of vertices 

yvvvvvx kk == −  , , , , , 1210 K  such that )(1 GEvv ii ∈−  for ki ≤≤1 .  We call x the origin and y the terminus 

of the walk.  These need not be distinct.  If yx = , the walk is said to be closed.  The length of the walk is 
k, the number of edge traversals performed in going from x to y along the sequence.  Since the edges of a 
graph have no inherent direction, we do not distinguish between the above sequence and its reversal: 

xvvvvvy kk == − 0121  , , , , , K .  Thus the designation as to which vertex in a walk is the origin and which is 

the terminus is arbitrary.  A walk in which no edge is traversed more than once is called a trail, and a trail 
in which no vertex is visited more than once (except possibly when origin= terminus) is called a path.  A 
closed path with at least one edge is called a cycle.   
 
Example 3  Referring to the above example we have: 

a cycle of length 3:  2  5  6  2 
a cycle of length 6:  1  2  3  6  5  4  1 
a 1-6 path of length 5:  1  4  2  5  3  6 
a 1-6 path of length 2:  1  2  6 
a 3-1 trail which is not a path:  3  2  5  6  2  1 
a 3-1 walk which is not a trail:  3  5  2  4  5  2  1 
the trivial 1-1 path (note this is not a cycle):  1 

 
The distance from x to y is the length of a shortest x-y path in G, if such a path exists, or infinity 
otherwise.  We write ),( yxδ  to denote the distance from x to y.  The Single Source Shortest Path (SSSP) 
problem is: given a distinguished vertex )(GVs∈  called the source, determine ),( xsδ  for all )(GVx∈ , 
and for each x reachable from s, determine a shortest s-x path in G. 
 
A graph G is said to be connected if it contains an x-y path for every )(, GVyx ∈ , otherwise G is called 
disconnected.  Examples 1 and 2 above are clearly connected, while the following is disconnected. 
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Example 4   V= {1, 2, 3, 4, 5, 6, 7, 8, 9}     E= {12, 15, 25, 26, 56, 37, 38, 78, 49} 
 
                                                 1                 2                  3                   4 
 
 
 
 
 
                                                 5                 6         7                  8        9                 
 
A subgraph of a graph G is a graph H in which )()( GVHV ⊆ , and )()( GEHE ⊆ .  In the above example 
({1, 2, 5}, {12, 15, 25}) is a connected subgraph, while ({2, 3, 6, 7}, {26, 37}) is a disconnected 
subgraph.  A subgraph H is called a connected component of G if it is (i) connected, and (ii) maximal with 
respect to property (i), i.e. any other subgraph of G that properly contains H is disconnected.  We see that 
Example 4 has three connected components:  ({1, 2, 5, 6}, {12, 15, 25, 26, 56}), ({3, 7, 8}, {37, 38, 78}), 
and ({4, 9}, {49}).  Obviously a graph is connected if and only if it has exactly one connected component. 
 
Trees 
A graph is called acyclic (or a forest) if it contains no cycles.  A tree is a graph that is both connected and 
acyclic.  The connected components of an acyclic graph are obviously trees.  The following example is a 
forest with three connected components.   
 
Example 5   
 
 
 
 
 
 
                    # of vertices:                  8                        6                       5 
                       # of edges:                  7                        5                       4 
 
Observe that in each tree of this forest, the number of edges is one less that the number of vertices.  This 
fact holds in general for all trees.  The following lemmas demonstrate how the independent properties of 
connectedness and acyclicity are related. 
 
Lemma 1  If T is a tree with n vertices and m edges, then 1−= nm . 
Proof:   
This result was proved in the handout on Induction Proofs by induction on n.  We prove it here by 
induction on m.  If 0=m  then T can have only one vertex, since T is connected.  Thus 1=n , and 

1−= nm , establishing the base case.  Now let 0>m  and assume that any tree T ′  with fewer than m 
edges satisfies 1|)(||)(| −′=′ TVTE .  Pick an edge )(TEe∈  and remove it.  The resulting graph consists 

of two trees 1T , 2T , each having fewer than m edges.  Suppose iT  has im  edges and in  vertices ( 2,1=i ).  

Then the induction hypothesis gives 1−= ii nm  ( 2,1=i ).  Also 21 nnn +=  since no vertices were 

removed.  Therefore  111)1()1(1 212121 −=−+=+−+−=++= nnnnnmmm , as required.  ///  
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Lemma 2  If G is an acyclic graph with n vertices, m edges, and k connected components, then knm −= . 
Proof:   
Let the connected components of G (which are necessarily trees) be denoted kTTT ,,, 21 K .  Suppose iT  

has im  edges and in  vertices respectively ( ki ≤≤1 ).  By Lemma 1 we have 1−= ii nm  ( ki ≤≤1 ).  

Therefore    

knnnmm
k

i

k

i
i

k

i
i

k

i
i −=−=−== ∑∑∑∑

==== 1111

1)1( , 

as claimed.                                                                                                                                                ///  
 
Lemma 3  If G is a connected graph with n vertices and m edges, then 1−≥ nm . 
Proof:   
Our proof is a generalization of that of Lemma 1, again by induction on m.  If 0=m , then G, being 
connected, can have only one vertex, hence 1=n .  Therefore 1−≥ nm  reduces to 00 ≥ , showing that the 
base case is satisfied.   
 
Let 0>m , and assume for any graph G′  with fewer than m edges that 1|)(||)(| −′≥′ GVGE .  Remove an edge 

)(GEe∈  and let eG −  denote the resulting subgraph.  We have two cases to consider. 

 
Case 1: eG −  is connected.  We note that eG −  has n vertices and 1−m  edges, so the induction 
hypothesis gives 11 −≥− nm .  Certainly then 1−≥ nm , as was claimed. 
 
Case 2:  eG −  is disconnected.  In this case eG −  consists of two connected components.  (**See the 
claim and proof below.)  Call them 1H  and 2H ,  and observe that each component contains fewer than m 

edges.  Suppose iH  has im  edges and in  vertices ( 2,1=i ).  The induction hypothesis gives 1−≥ ii nm  

( 2,1=i ).  Also 21 nnn +=  since no vertices were removed.  Therefore 
 

111)1()1(1 212121 −=−+=+−+−≥++= nnnnnmmm , 
 
 and therefore 1−≥ nm  as required.                                                                                                   /// 
 
Claim**:  Let G be a connected graph and )(GEe∈ , and suppose that eG −  is disconnected.  (Such an 
edge e is called a bridge).  Then eG −  has exactly two connected components. 
Proof:   
Since eG −  is disconnected, it has at least two components.  We must show that it also has at most two 
components.  Let e have end vertices u, and v.  Let uC  and vC  be the connected components of eG −  that 

contain u and v respectively.  Choose )(GVx∈  arbitrarily, and let P be an x-u path in G (note P exists 
since G is connected.)  Either P includes the edge e, or it does not.  If P does not contain e, then P remains 
intact after the removal of e, and hence P is an x-u path in eG − , whence uCx∈ .  If on the other hand P 

does contain the edge e, then e must be the last edge along P from x to u. 
                                   x                                                                    v                u 
                        P  
                                                                                                                  e 
In this case eP −  is an x-v path in eG − , whence vCx∈ .  Since x was arbitrary, every vertex in eG −  

belongs to either uC  or vC , and therefore eG −  has at most two connected components.                     ///   
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Lemma 4  If G is a graph with n vertices, m edges, and k connected components, then knm −≥ . 
Proof:   
Let kHHH ,,, 21 K , be the connected components of G.  Let in  and im  denote the number of vertices and 

edges, respectively, of iH , for ki ≤≤1 .  By Lemma 3 we have 1−≥ ii nm , for ki ≤≤1 , and therefore  

      

knnnmm
k

i

k

i
i

k

i
i

k

i
i −=−=−≥= ∑∑∑∑

==== 1111

1)1( .                                       

  
whence knm −≥  as claimed.                                                                                                                 ///  
 
Lemma 5  Let G be a connected graph with n vertices and m edges.  Suppose also that 1−= nm .  Then G 
is acyclic, and hence a tree.   
Proof:   
Suppose G is connected and 1−= nm .  Assume, to get a contradiction, that G is not acyclic.  Let e be any 
edge belonging to any cycle in G.  Remove e from G, and denote the resultant graph by eG − .  Observe 
that eG −  has 1−m  edges and n vertices, respectively.  Since e is a cycle edge, its removal does not 
disconnect G, and therefore eG −  is also connected.  Lemma 3 above then gives 11 −≥− nm , whence 

nm ≥ .  But then 1−= nm  gives nn ≥−1 , which is false.  This contradiction shows that our assumption 
was itself false, and therefore G is acyclic, as claimed.  Being connected, G is also a tree.                   ///  
 
Lemma 6   Let G be an acyclic graph with n vertices and m edges.  Suppose also that 1−= nm .  Then G 
is connected, and hence a tree.   
Proof:   
Suppose G is acyclic and 1−= nm .  Let k be the number of connected components of G.  By Lemma 2 
we have knm −= , whence knn −=−1 , and hence 1=k , showing that G is connected, as claimed.  ///  
 
Consider the following three properties of a graph ),( EVG =  in light of Lemmas 1, 5, and 6:  

(i) G is connected,   
(ii)  G is acyclic  
(iii)  1|||| −= VE .   

We see that these properties are logically dependent in the sense that if any two hold, then the third must 
also hold.  Lemma 1 states that (i) and (ii) together imply (iii), Lemma 5 says that (i) and (iii) imply (ii), 
and Lemma 6 says (ii) and (iii) imply (i).  The following theorem summarizes these and other facts about 
trees. 
 
Theorem 1 (The Treeness Theorem)  Let ),( EVG =  be a graph.  The following are equivalent. 

a) G is a tree (i.e. connected and acyclic). 
b) G contains a unique x-y path for any Vyx ∈, . 
c) G is connected, but if any edge is removed from E, the resulting graph is disconnected. 
d) G is connected, and  1|||| −= VE . 
e) G is acyclic, and 1|||| −= VE . 
f) G is acyclic, but if any edge is added to E (joining two non-adjacent vertices), then the resulting 

graph contains a unique cycle. 
Proof:  As mentioned in the preceding paragraph, Lemmas 1, 5, and 6 have already established the 
equivalences )()()( eda ⇔⇔ .   
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Directed Graphs 
A Directed Graph (or Digraph) ),( EVG =  is a pair of sets, where the vertex set )(GVV =  is, as before, 
finite and non-empty, and the edge set VVGEE ×⊆= )( , i.e. E consists of ordered pairs of vertices.   
 
Example 6   } , , ,{ vuyxV =  and )},( ),,( ),,( ),,( ),,{( vxuvyvxuyxE =  
 
                                                                   x                      y 
 
 
 
 
 
 
                                                                  u                       v 
 
The directed edge (x, y) in the above example is said to have origin x and terminus y, and we say that  x is 
adjacent to y.  The origin and terminus of a directed edge are said to be incident with that edge.  Two 
edges are called adjacent if they have a common end vertex, so for instance (x, y) in the above example is 
adjacent to (u, x).  The in degree of a vertex is the number of edges having that vertex as terminus, and 
it’s out degree is the number of edges having that vertex as origin.  The degree of a vertex is the sum if 
it’s in degree and out degree.  Thus in the above example 1)(id =x , 2)(od =x , and 3)(deg =x .  The 
analog of the handshake lemma for directed graphs is 
 

|)(|)(od)(id
)()(

GExx
GVxGVx

== ∑∑
∈∈

 

 
As in the undirected case, there is a simple notion of isomorphism for directed graphs.  Two digraphs 1G  

and 2G  are said to me isomorphic if there exists a bijection )()(: 21 GVGV →φ  such that for any 

)(, 1GVyx ∈ , the ordered pair ),( yx  is a directed edge of 1G  if and only if the ordered pair ))(),(( yx φφ  

is a directed edge of 2G .  Thus φ  preserves incidence relations and directionality amongst the vertices 

and edges of 1G .  We write 21 GG ≅  to mean that 1G  and 2G  are isomorphic.   
 
A directed path P in a digraph is a finite sequence of vertices P: kk vvvvv  ,, , , , 1210 −K  such that 

Evv ii ∈− ),( 1  for all ki ≤≤1 .  As in the undirected case, we require that all vertices be distinct (except 

possibly 0v  and kv ), and that no edge be traversed more than once.  If it so happens that the initial and 

terminal vertices are the same, 10 vv = , the path is called a directed cycle.  The length of such a path is k, 

the number of edges traversed.  If yvvx k =≠= 0 , we call P a directed x-y path.  Notice that, unlike the 

undirected case, a directed x-y path and a directed y-x path are not the same thing.  We say that )(GVy∈  
is reachable from )(GVx∈  if G contains a directed x-y path.  Observe that the reachability relation is 
reflexive (x is reachable from x via the trivial path with no edges), transitive (if y is reachable from x, and 
z is reachable from y, then z is reachable from x), but not symmetric (y may be reachable from x without x 
being reachable from y). 
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A digraph G is said to be strongly connected if for all )(, GVyx ∈ , both x is reachable from y, and y is 
reachable from x.  Notice that the digraph in Example 6 above is not strongly connected, since for 
instance, u is not reachable from y.  The following example is strongly connected. 
 
Example 7   } , , ,{ vuyxV =  and )},( ),,( ),,( ),,( ),,{( vxuvvyxuyxE =  
 
                                                                   x                      y 
 
 
 
 
 
 
                                                                  u                       v 
 
More generally, a subset )(GVS ⊆  is said to be strongly connected if for all Syx ∈, , both x is reachable 
from y, and y is reachable from x.   Furthermore, a subset )(GVS ⊆  is said to be a strongly connected 
component of the digraph G if it is (i) strongly connected, and (ii) maximal with respect to property (i), 
i.e. any other subset of )(GV  that properly contains S is not strongly connected.  Obviously G is strongly 
connected iff it has just one strongly connected component, namely )(GV  itself.  Going back to the 
digraph in Example 6, we see that it has 2 strongly connected components: } , ,{ vux  and }{ y . 
 
Representations of Graphs 
We discuss three methods for representing graphs and digraphs in terms of standard data structures 
available in most computer languages.  They are called the Incidence Matrix, the Adjacency Matrix, and 
the Adjacency List representations respectively.   
 
The Incidence Matrix )(GI  requires that both the vertex set )(GV  and the edge set )(GE  be ordered.  

For this purpose we suppose that },,,{ 21 nxxxV K=  and },,,,{ 321 meeeeE K= .  Then )(GI  is an mn×  

rectangular matrix.  Row i corresponds to vertex ix , for ni ≤≤1 .  Column j corresponds to edge je  

( mj ≤≤1 ), and contains zeros everywhere except for the two rows corresponding to the ends of je .  If G 

is an undirected graph, these two rows contain 1s.  If G is a directed graph, the row corresponding to the 
origin of je  contains 1− , while the row corresponding to the terminus of je  contains 1+ .  Thus 

)()( jiIGI =  where in the undirected case: 

 





=
otherwise   0

ith incident w isif   1 ji
ji

ex
I  

and in the directed case: 








−=

otherwise   0

 oforigin   theis  if   1

 of  terminus theis  if   1

ji

ji

ji ex

ex

I  
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The Adjacency Matrix )(GA  requires that only the vertex set come equipped with an order.  It is a square 

matrix  of size nn× , where ||Vn = .  We suppose },,,{ 21 nxxxV K=  and define the ith row and jth 

column of  )(GA  to be 1 if there is an edge from ix  to jx , and 0 otherwise.  Thus we have )()( ijAGA =  

where in the undirected case 
 





=
otherwise   0

 oadjacent t isif   1 ji
ji

xx
A  

and in the directed case 





=
otherwise   0

  terminusandorigin with edgean  is  thereif   1 ji
ji

xx
A  

 
Observe that for an undirected graph )(GAA =  is a symmetric matrix (i.e. TAA = , where TA  denotes the 
transpose of A .)  The Adjacency Matrix for a directed graph is not in general symmetric. 
 


