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CMPS 101 
Algorithms and Abstract Data Types 
 

ADTs and Modules in Java and C 
 
Introduction 
This document introduces the concepts of Modules and ADTs, and describes how to implement them 
in both Java and C.  Informally, an Abstract Data Type (ADT) is a collection of mathematical objects 
of some kind, together with some associated operations on those objects.  When an ADT is used in a 
program, it is usually implemented in its own module.  A module is a self-contained component of a 
program having a well defined interface that details its role and relationship to the rest of the program.   
 
Why are ADTs necessary?  The standard data types provided by most programming languages are not 
powerful enough to capture the way we think about the higher level objects in our programs.  This is 
why most languages have a type declaration mechanism the allows the user to create high level types 
as desired.  Often the implementation of these high level types gets spread throughout the program, 
creating complexity and confusion.  Errors may occur when the legal operations on the high level types 
are not well defined or are not consistently used.   
 
The term Abstract Data Type can mean different things to different people, but for the purposes of this 
course, an ADT consists of two things: 
 

(1) A set S of “mathematical structures”, the elements of which are called states. 
(2) An associated set of operations which can be applied to the states in S. 

 
Each ADT instance or object  has a current state which is one of the elements of the set S.  The 
operations on S fall (roughly) into two classes.  Manipulation procedures are operations which cause 
an ADT object to change it's state.  Access functions are operations which return information about an 
ADT object, without altering it's state.  In this course we will maintain a clear distinction between the 
two types of operations.  We will also from time to time consider operations which don't fall into either 
category, but we will not use operations which belong to both categories.  An ADT is an abstract 
mathematical entity which exists apart from any program or computing device.  On the other hand, 
ADTs are frequently implemented by a program module.  We will distinguish between the 
mathematical ADT and it's implementation in a programming language.  In fact, a single ADT could 
have many different implementations, all with various advantages and disadvantages. 
 
 
Example   Consider an integer queue.  In this case S is the set of all finite sequences of integers, and 
the associated operations are: Enqueue, Dequeue, getFront, getLength, and isEmpty.  The meanings of 
these operations are given below.  One possible state for this ADT is  (5, 1, -7, 2, -3, 4, 2).  (It is 
recommended that the reader who is unfamiliar with elementary data structures such as queues, stacks, 
and lists, review sections 10.1 and 10.2 of the text.) 
 
 

Manipulation procedures 
Enqueue  Insert a new integer at the back of the queue 
Dequeue  Remove an integer from the front of the queue 
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Access functions 
getFront  Return the integer at the front of the queue 
getLength  Return the number of integers in the queue 
isEmpty  Return true if length is zero, false otherwise 

 
Other examples of mathematical structures which could form the basis for an ADT are: sets, graphs, 
trees, matrices, polynomials, or finite sequences of such structures.  In principle, the underlying set S 
could be anything, but typically it is a set of discrete mathematical objects of some kind. 
 
An ADT object is always associated with a particular sequence, or history, of states, brought about by 
the application of ADT operations.  In our queue example we could have the following sequence 
starting with the empty state ∅ : 
 

Operation   State 
∅  

Enqueue(5)  (5) 
Enqueue(1)  (5, 1) 
Enqueue(7)  (5, 1, 7) 
Dequeue()  (1, 7) 
Enqueue(3)  (1, 7, 3) 
getLength()  (1, 7, 3) 

 
Observe that if isEmpty is true for some state, then getFront and Dequeue are undefined on that state.  
One option to deal with this situation would be to make special definitions for Dequeue and getFront 
on an empty queue.  We could for instance define getFront to return zero on an empty queue, and 
define Dequeue to not change it's state.  Unfortunately, these special cases complicate the ADT and 
can easily lead to errors.  A better solution is to establish preconditions for each operation indicating 
exactly when (i.e. to which states) that operation can be applied.  Thus a precondition for both getFront 
and Dequeue is: ‘not isEmpty’.  In order for an ADT to be useful, the user must be able to determine if 
the preconditions for each operation are satisfied.  Good ADTs clearly indicate the preconditions for 
each operation, usually as a sequence of access function calls.  Good ADTs also document their 
postconditions, i.e. conditions which will be true after an operation is performed.  For example, a 
postcondition of Enqueue is ‘not isEmpty’.  ADT operations can sometimes be thought of as functions 
in the mathematical sense.  Preconditions and postconditions then define the function's domain and 
codomain.  Only when all operations have been defined, along with all relevant preconditions and 
postconditions, can we say that an ADT has been fully specified. 
 
We often consider multiple instances of the same ADT.  For example, we may speak of several 
simultaneous integer queues.  ADT operations should therefore specify which object is being operated 
on.  It is also possible for some operations to refer to multiple objects.  We could for instance have an 
access function called Equals which operates on two queues and returns true if they contain the same 
elements in the same order and false otherwise, or a manipulation procedure called Concatenate which 
empties one queue and places its contents at the end of the another queue.   
 
It is sometimes helpful to think of an ADT object as being a ‘black box’ equipped with a control panel 
containing buttons which can be pushed (manipulation procedures), and indicator lights which can be 
read (access functions). 
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Note that some texts (including our own) define Dequeue so as to return the front element, as well as to 
alter the state of the queue.  In this example, the Dequeue operation deletes the element at the front of 
the queue, but doesn’t return a value.  We adopt this particular definition in order to maintain the 
distinction between access functions and manipulation procedures.  Note that such a change in the set 
of ADT operations results in a different ADT.  If for instance we implement our queue by storing 
integers in an array of fixed size, then we should add an access function called isFull which reports on 
whether there is room left in the array for another integer.  Enqueue would then have the precondition 
‘not isFull’.  Although this ADT and our original ADT can both be legitimately called queues, they are 
different ADTs. 
 
Implementing ADTs 
There is a straightforward way of implementing an ADT in both Java and C, once it has been specified.  
The implementation strategies in these two languages look different on the surface, but conceptually 
they are very similar, the differences being mostly syntactical. 
 
Java Implementation 
In Java an ADT is embodied in a class.  A class contains fields (or member variables) which form the 
‘mathematical structure’, and methods which implement the ADT operations.  Such a class may also 
contain some (private) inner classes as part of the ‘mathematical structure’.  An instance of this class is 
accessed by a reference variable which represents an instance of the ADT. 
 
Example  The inside of our integer queue ‘black box’ can be pictured as 
 
                                                 Instance of Queue ADT   
 
                                                        Fields  
 
               Reference  Variable          front                                                      data 
                         myQueue                 back                                                      next 
                                                         length                                          Private Node Class 
 
 
 
 
The user of the ADT should never be allowed to directly access the ‘structure’ inside the ‘box’.  
Instead a reference variable (myQueue) points to an instance of the class and is passed as an (implicit) 
first argument to the methods of the class.  For example, the call  
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myQueue.getFront()   
 
would return the front element in the ADT object referenced by myQueue.  For this reason (instance) 
variables should always be declared as private.  This is the idea of information hiding:  the user of the 
ADT cannot see or directly effect anything inside the ‘black box’ except through the official ADT 
operations.  In the implementation depicted above, a queue consists of a singly linked list of private 
Node objects which cannot be directly accessed by the user of the Queue class.  The purpose of this 
restriction is to free the user from the responsibility of knowing the internal details of a Queue object, 
which reduces the complexity of the user’s task.  To the user, a Queue is simply a sequence of integers 
which can be manipulated in certain ways. 
 
Other methods are also needed but which do not correspond to access functions or manipulation 
procedures.  Among these are the constructors which create new ADT instances, and the toString 
method which provides a string representation of the class.   Our integer queue ADT in Java might 
look something like: 
 
// Queue.java 
// An integer queue ADT 
 
class Queue { 
    
   private class Node { 
      // Fields 
      int data; 
      Node next; 
 
      // Constructor 
      Node(int data) {...} 
 
      // toString: overrides Object’s toString meth od 
      public String toString() {...} 
   } 
 
   // Fields 
   private Node front; 
   private Node back; 
   private int length; 
 
   // Constructors 
   Queue() {...} 
 
   // Access functions 
   int getFront() {...} 
   int getLength() {...} 
   boolean isEmpty() {...} 
    
 
 
   // Manipulation procedures 
   void Enqueue(int data) {...} 
   void Dequeue() {...} 
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   // other methods 
   // toString:  Overrides Object's toString method . 
   public String toString() {...} 
 
} 
 
An ADT implementation should be fully tested in isolation before it is used in a larger program.  The 
following program serves this purpose. 
 
// QueueTest.java 
 
class QueueTest { 
   public static void main(String[] args){ 
      // Allocate several Queue Objects, and manipu late 
      // them in various ways.  Call each of the ab ove 
      // ADT operations at least once. 
      ... ... ... 
   } 
} 
 
Exercise  Fill in the definitions of all of these methods, i.e. replace {...}  where it appears by some 
appropriate Java source code.  A solution to this exercise will be posted on the webpage. 
 
By convention, all of our ADT implementations in Java should follow this same pattern:  private inner 
classes, followed by fields, then constructors, access methods, manipulation procedures, then all other 
methods.  This convention is by no means universal, but we adopt it in this course for the sake of 
uniformity.  All ADT operations must state their own preconditions in a comment block, and then 
check that those preconditions are satisfied before proceeding.  If a precondition is violated, the 
program should quit with a useful error message.  This can be done efficiently in Java by throwing a 
RuntimeException.  (It is not necessary, and not recommended, that you write new Exception classes 
to be thrown when preconditions are violated.) 
 
A mentioned previously, a module is a part of a program which is isolated from the rest of the program 
by a well defined interface.  We think of ADT modules as providing services (e.g. functions, data 
types, etc.) to clients.  A client is anything (program, person, another module) which uses an ADT 
module’s services.  These services are said to be exported to the client or imported from the ADT 
module.   
 
 
 
 
 
 
 
 
The module concept supports the idea of information hiding, i.e. clients have no access to a module’s 
implementation details (inside the black box).  The client can only access the services exported through 
the interface.  Generally we will have a separate module for each ADT.  As we’ve seen, an ADT 
module in Java is embodied in a single .java file containing a single top level class, and possibly some 

ADT 
Module 

Client 
Module 

Interface 
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private inner classes.  The module interface consists of all variables and methods in that class which 
are not declared private. 
 
C Implementation 
In C the situation is somewhat different since modularity is not directly supported by the language.  An 
ADT implementation contains a struct which provides access to the ‘mathematical structure’ 
underlying the ADT.  The user of the ADT (i.e. the client module) is given a reference which is a 
pointer to this struct.  One C function is defined for each of the ADT operations.  Each such function 
takes an ADT reference as argument, specifying which instance of the ADT to operate on.  This 
reference is defined in a way that prevents the client from following the pointer to access the interior of 
the ‘black box’, thus enforcing the information hiding paradigm.  
 
                                             Instance of Queue ADT 
 
                                               Queue struct 
 
              Pointer Variable            front                                                        data 
                    myQueue                 back                                                        next 
                                                    length                                          Private Node struct 
 
 
 
 
Two more C functions are necessary.  One to create new objects (constructor) and one to free memory 
associated with ADT instances no longer in use (destructor).  It is the responsibility of these functions 
to manage all of the memory inside the ‘black box’, balancing calls to malloc (or calloc) and free. 
 
In C, we split our ADT module implementation into a .c file containing struct and function definitions, 
and a .h file containing typedefs and prototypes of exported functions. The ADT interface by definition 
consists of exactly that which appears in the .h file.  Functions whose prototypes do not appear in this 
file cannot be accessed from outside the ADT implementation, are therefore considered private. 
 
Example 
/* Queue.h */ 
typedef struct Queue* QueueRef; 
 
/* Constructor-Destructor */ 
QueueRef newQueue(void); 
void freeQueue(QueueRef* pQ); 
 
/* Access functions */ 
int getFront(QueueRef Q); 
int getLength(QueueRef Q); 
int isEmpty(QueueRef Q); 
 
/* Manipulation procedures */ 
void Enqueue(QueueRef Q, int data); 
void Dequeue(QueueRef Q); 
/* Other functions */ 
void printQueue(QueueRef Q, FILE* out); 
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In this example, Queue.h defines a pointer called QueueRef to a struct called Queue, which is not 
defined in this file.  This is how data hiding is implemented in C.  The client module will #include 
Queue.h so that the compiler recognizes calls to the exported functions.  The client can also declare 
variables of type QueueRef and define functions which take QueueRef arguments.  Notice however 
that the client cannot dereference through a QueueRef variable, since the Queue struct is not defined in 
the file Queue.h.  That definition appears in the next file. 
 
/* Queue.c */ 
#include<stdio.h> 
#include<stdlib.h> 
#include "Queue.h"  
 
/* Private inner Node struct, corresponding referen ce type, and   * 
 * constructor-destructor pair.  Not exported.                    */ 
 
typedef struct Node{     
   int data; 
   struct Node* next; 
} Node; 
 
typedef Node* NodeRef;  
 
NodeRef newNode(int node_data) {...} 
void freeNode(NodeRef* pN) {...} 
 
/* Public Queue struct, constructor-destructor */ 
typedef struct Queue{ 
   NodeRef front; 
   NodeRef back; 
   int length; 
} Queue; 
 
QueueRef newQueue(void){ 
   QueueRef Q; 
   Q = malloc(sizeof(Queue)); 
   Q->front = Q->back = NULL; 
   Q->length = 0; 
   return(Q); 
} 
void freeQueue(QueueRef* pQ) {...} 
 
/* Access functions */ 
int getFront(QueueRef Q) {...} 
int getLength(QueueRef Q) {...} 
int isEmpty(QueueRef Q) {...} 
 
/* Manipulation procedures */ 
void Enqueue(QueueRef Q, int data) {...} 
void Dequeue(QueueRef Q) {...} 
 
/* Other functions */ 
void printQueue(QueueRef Q, FILE* out) {...} 
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Notice that the type NodeRef , as well as functions newNode()  and freeNode() , do not appear in 
the file Queue.h, and are therefore not available to the client.  Exporting these items would give the 
client access to the inside of the black box, violating the modularity principle.  Notice also that another 
public function called printQueue()  is included in both Queue.h and Queue.c.  This function prints 
the state of a Queue object to a FILE handle (which may be stdout .)  Function printQueue()  
corresponds roughly to the toString()  function in Java.   
 
As before, it is necessary to test the ADT implementation in isolation before it is used in a larger 
application. 
 
/* QueueTest.c */ 
#include<stdio.h> 
#include<stdlib.h> 
#include "Queue.h"  
 
int main(int argc, char* argv[]){ 
   /* Call all of the above functions at least once  */ 
   return(0); 
} 
 
Exercise  Complete the definitions of these functions by replacing { . . .} by appropriate C code.  The 
solution to this exercise will be posted on the webpage.  Also read the handout entitled "Additional 
Remarks on ADTs in C". 
 
Some may (correctly) argue that our C Integer Queue is not really a general purpose queue, and that 
we should really write a queue of ‘anythings’.  The problem is that C’s type mechanism is not 
advanced enough to properly deal with this issue.  There are two possible solutions.  The safer solution 
is to simply edit your Integer Queue to be a queue of whatever you need a queue of.  Simply changing 
the appropriate ints  to the new type will create a ready-made queue.  This change can be easily 
accomplished by defining the type QueueElement  in the .h file as 
 
typedef int QueueElement  
 
The type QueueElement  is used to refer to the things that are stored in a Queue.  This methodology 
lets you change the element type by editing a single line of code.  (We follow this procedure in the 
exercise solution posted on the webpage.) 
 
This simple fix has the drawback that if you want int  queues and double  queues in the same 
program, then you need two different Queue modules.  A more powerful (and dangerous) technique is 
to make QueueElement  a generic pointer, by doing 
 
typedef void* QueueElement  
 
Now the Queue module can handle Queues which hold any kind of pointer.  The danger is that a client 
might get confused and call getFront()  or Enqueue()  on the wrong kind of pointer.  Using void*  
means that you will not find out about this problem until you run the program and get a segmentation 
fault.  These types of pointer errors can be very difficult to debug.  Given these warnings, I would 
recommend the safer solution for those students who do not have extensive C experience. 
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The equivalent queue of ‘anything’ in Java is accomplished by simply defining the data  field in the 
private node class to be Object  rather than int .  This is essentially the same as using void*  in C, but 
without the same danger of runtime errors.  If such an error does occur, Java’s exception handling 
mechanism should make it easier to track down.  Better yet, starting with JDK 1.5, Java offers a new 
mechanism for abstracting over data types called generics, which is similar to the notion of a Template 
in C++.  See   http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf   for a nice tutorial on the subject.    
 
 
 


