CMPS 101

Fall 2009

Homework Assignment 8

1. (1 Point) p.132: 6.2-5

The code for Max-Heapify is quite efficient in terms of constant factors, except possibly for the recursive call in line 10 , which might cause some compilers to produce inefficient code. Write an efficient Max-Heapify that uses an iterative control construct (a loop) instead of recursion.
2. (1 Point)

Let $x \in V(G)$ and suppose that after INITIALIZE-SINGLE-SOURCE (G, s) is executed, some sequence of calls to Relax() causes $d[x]$ to be set to a finite value. Then G contains an $s-x$ path of weight $d[x]$. (Hint: Use induction on the length of the Relaxation sequence, and recall that this result was proved in class.)
3. (1 Point) p.591: 24.1-3

Given a weighted, directed graph $G=(V, E)$ with no negative-weight cycles, let m be the maximum over all pairs of vertices $u, v \in V$ of the minimum number of edges in a shortest path from u to v. (Here, the shortest path is by weight, not the number of edges.) Suggest a simple change to the Bellman-Ford algorithm that allows it to terminate in $m+1$ passes.
4. (1 Point) p.600: 24.3-1

Run Dijkstra's algorithm on the directed graph of Figure 24.2, first using vertex s as the source and then using vertex z as the source. In the style of Figure 24.6 , show the d and π values and the vertices in set S after each iteration of the while loop.

5. (1 Points) p.600: 24.3-4

We are given a directed graph $G=(V, E)$ on which each edge $(u, v) \in E$ has an associated value $r(u, v)$, which is a real number in the range $0 \leq r(u, v) \leq 1$ that represents the reliability of a communication channel from vertex u to vertex v. We interpret $r(u, v)$ as the probability that the channel from u to v will not fail, and we assume that these probabilities are independent. Give an efficient algorithm to find the most reliable path between two given vertices.
6. (1 Point) p.613: 24.5-4

Let $G=(V, E)$ be a weighted, directed graph with source vertex s and let G be initialized by INITIALIZE-SINGLE-SOURCE (G, s). Prove that if a sequence of relaxation steps sets $\pi[s]$ to a non-NIL value, then G contains a negative-weight cycle.

