CMPS 101

Fall 2009

Homework Assignment 4

1. (3 Points)

Consider the function $T(n)$ defined by the recurrence formula

$$
T(n)= \begin{cases}6 & 1 \leq n<3 \\ 2 T(\lfloor n / 3\rfloor)+n & n \geq 3\end{cases}
$$

a. (1 Point) Use the iteration method to write a summation formula for $T(n)$.
b. (1 Point) Use the summation in (a) to show that $T(n)=O(n)$
c. (1 Point) Use the Master Theorem to show that $T(n)=\Theta(n)$
2. (6 Points)

Use the Master theorem to find asymptotic solutions to the following recurrences.
a. (1 Point) $T(n)=7 T(n / 4)+n$
b. (1 Point) $T(n)=9 T(n / 3)+n^{2}$
c. (1 Point) $T(n)=6 T(n / 5)+n^{2}$
d. (1 Point) $T(n)=6 T(n / 5)+n \log (n)$
e. (1 Point) $T(n)=7 T(n / 2)+n^{2}$
f. (1 Point) $S(n)=a S(n / 4)+n^{2}$ (Note: your answer will depend on the parameter a.)
3. (1 Point) p.75: 4.3-2

The recurrence $T(n)=7 T(n / 2)+n^{2}$ describes the running time of an algorithm A. A competing algorithm B has a running time of $S(n)=a S(n / 4)+n^{2}$. What is the largest integer value for a such that B is a faster algorithm than A (asymptotically speaking)? In other words, find the largest integer a such that $S(n)=o(T(n))$.
4. (1 Points)

Let G be an acyclic graph with n vertices, m edges, and k connected components. Show that $m=n-k$. (Hint: use the fact that $|E(T)|=|V(T)|-1$ for any tree T, from the induction handout.)
5. (1 Point) (Appendix B. 4 problem 3)

Show that any connected graph G satisfies $|E(G)| \geq|V(G)|-1$. (Hint: use induction on the number of edges.)

