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CMPS 101  
Fall 2009 
Homework Assignment 3  
 
1. (1 Point)  The last exercise in the handout entitled Some Common Functions.   

Use Stirling's formula to prove that 
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2. (2 Points) (Exercise 1 from the induction handout)   

Prove that for all 1≥n :  
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.  Do this twice: 

a.  (1 Point) using form IIa of the induction step. 
b.  (1 Point) using form IIb of the induction step. 

 
3. (1 Point)  Exercise 2 from the induction handout)   

Define )(nS  for +∈ Zn  by the recurrence: 
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Prove that )lg()( nnS ≥  for all 1≥n , and hence )(lg)( nnS Ω= . 
 

4. (1 Point) 
Let )(nf  be a positive, increasing function that satisfies ))(()2/( nfnf Θ= .  Show that  
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(Hint:  follow the Example on page 4 of the handout on asymptotic growth rates in which it is proved 

that )( 1
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k ni  for any positive integer k.)  

  
5. (1 Point)  

Let )(nT  be defined by the recurrence formula 
 

 



≥+

=
=

2)2/(

11
)( 2 nnnT

n
nT  

 

Show that 1≥∀n :  2

3

4
)( nnT ≤ , and hence )()( 2nOnT = .  (Hint: follow Example 3 on page 3 of the 

handout on induction proofs.) 
 
 

  


