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In this assignment you will create a Graph module in C to implement both Dijkstra's algorithm and 

Bellman-Ford's algorithm for solving the single source shortest paths problem in a weighted directed 

graph.  You may use your graph module from pa4 as a starting point for this project.  However, since 

extensive changes to the design will be necessary, you may choose to start from scratch.  In any case it is 

not required that your graph module in this project be backward compatible with pa4, or that the 

functionality from that project be maintained in any way.     

 

One significant difference between this project and pa4 is that you will be working with weighted graphs.  

Each edge weight should be stored as type double.  These weights should be maintained by including a 

two dimensional array of doubles as part of your Graph struct.  If the graph contains a directed edge from 

vertex u to vertex v, then the u
th
 row v

th
  column of this array will contain the weight of that edge.  If there 

is no edge from u to v, then the u
th
 row v

th
 column will contain infinity.  As usual it is recommended that 

you avoid index 0, and therefore this array will be of size )1()1( +×+ nn , where n is the number of 

vertices in the graph. 

 

As in the last two projects vertices will be labeled 1 through n.  Both Dijkstra and Bellman-Ford require 

that vertices posses the attributes parent and distance.  It is recommended that these attributes be included 

in your Graph struct as a pair of parallel arrays of types int and double respectively.  It is possible to 

encapsulate parent and distance fields into a private inner struct called Vertex, then include an array of 

type Vertex in your Graph struct, but this design is not ideal, as we’ll see below.   

 

Your project will include a separate ADT module called PriorityQueue, which will be used by Dijkstra’s 

algorithm to manage vertices.  You are required to implement PriorityQueue as a heap, as described in 

chapter 6 (pages 127-144) of the text.  There are some important differences however between the priority 

queue in this project and the one discussed in the text and in lecture.  To begin with, Dijkstra requires a 

min-priority queue, so the underlying array will be arranged as a min-heap, not a max-heap.  This array 

will contain the integers from 1 to n, each of which is understood (at the level of the client Graph module) 

to be the label of some vertex.  For purposes of forming a heap however, the ‘key’ of an array element u is 

not the integer u, but the distance field of the corresponding vertex.  Inside the PriorityQueue module 

distance[u] will be known as key[u].  Thus if the underlying array is A, the min-heap property would read: 

 

(*)   ]][[key)]](parent[[key iAiA ≤     for    heap_size1 ≤≤ i  

 

The constructor newPriorityQueue() must build a heap out of the integer array A=(1, 2, …, n) using 

values in the array of keys to establish this min-heap property.  (This is why it is better not to encapsulate 

the distance and parent attributes of a vertex in your Graph ADT, and instead maintain distance[] as a 

separate array which can then be passed as a parameter to newPriorityQueue().)  It is recommended that 

heapify() and buildHeap() from chapter 6 be implemented as private functions in the PriorityQueue 

module to facilitate this heap building process.  You may also wish to include functions left(), right(), and 

parent() from 6.1 to navigate the array.  Function newPriorityQueue() will allocate memory for the 

PriorityQueue struct, then call buildHeap() to arrange the underlying array A as a heap according to 

property (*) above.  When this is done the values (key[A[1]], key[A[2]], …, key[A[n]]) form a min-heap.  



Thus the elements of A may be considered to be pointers to keys, since they are actually indices to the key 

array.  It is also very helpful to think of A as being a permutation or re-arrangement of the keys.  Note that 

at no time are elements in the key array swapped, only the elements of array A are.   

 

There is another subtle point concerning the underlying array A.  Certain of the required functions listed 

below, such as inQueue() and decreaseKey(), require that given u in the range nu ≤≤1 , you determine 

the integer i in the range ni ≤≤1  such that uiA =][ .  Now this could be done by doing a linear search of 

A, but such a search would be inefficient.  So inefficient in fact, as to defeat the whole purpose of 

implementing PriorityQueue as a heap.  The better (required) approach is to maintain another array I, also 

containing the integers from 1 to n, that is the inverse permutation of A in the sense that uuIA =]][[  for 

all u, and iiAI =]][[  for all i.  A call to inQueue(Q, u) simply checks the inequality heap_size][1 ≤≤ uI .  

To implement function decreaseKey(Q, u, k),  refer to the algorithm Heap-Increase-Key on p. 140 of the 

text, adapt it for a min-heap by reversing certain inequalities, and note that as stated, it requires an array 

index i as input, not an array element u.  This is remedied by setting ][uIi =  then translating the pseudo-

code into C.  Creating and maintaining array I is not difficult.  Both A and I are initialized by the 

constructor newPriorityQueue() to be the ‘identity’ permutation (1, 2, …, n).  Certain functions will 

perform swaps of the elements of A.  These include the PriorityQueue operations deleteMin() and 

decreaseKey(), and the private function heapify().  To maintain I use the following rule: whenever a swap 

of the form ][][ jAiA ↔  is performed in any of these functions, perform the inverse swap 

]][[]][[ jAIiAI ↔  as well.  This rule guarantees that array I always represents the inverse permutation of 

A.  (Confirm this on a few small examples if necessary to convince yourself.)  A private function with the 

following signature may be useful in this regard:   

 
void swap(int* myArray, int i, int j)  

 

One additional point concerns the array of keys.  The above discussion suggests that your PriorityQueue 

struct should include fields of type int* for the array A and it’s inverse I.  Memory for these arrays 

should of course be allocated by the constructor newPriorityQueue().  Another field of type double* 

should also be included for the array of keys.  However, memory for this array should not be allocated by 

the PriorityQueue constructor, since it belongs to the client (Graph) module, and will already have been 

allocated by it’s constructor.  Thus newPriorityQueue() will take Graph’s array of vertex distances as 

input, then simply set the double* key field in the PriorityQueue struct to point to this array.  In other 

words, both Graph and PriorityQueue contain fields of type double* which point to the very same array.  

This gives PriorityQueue the ability to reach in and alter the internal state of  it’s client Graph via the 

function decreaseKey().  Note that this does not constitute a breach of the data hiding doctrine however, 

since that principle only goes one way:  a client module may not see or affect what goes on inside it’s 

ADT service module except through exported operations.    

 

Your PriorityQueue module will export the following functions: 

 
/* Constructors-Destructors */ 

PriorityQueueRef newPriorityQueue(int n, double* key); 

void freePriorityQueue(PriorityQueueRef* pQ); 

 

/* Access functions */ 

int getNumElements(PriorityQueueRef Q); 

int getMin(PriorityQueueRef Q); 

int inQueue(PriorityQueueRef Q, int u); 

 



/* Manipulation procedures */ 

void deleteMin(PriorityQueueRef Q); 

void decreaseKey(PriorityQueueRef Q, int u, double k); 

 

/* Other Functions */ 

void printPriorityQueue(FILE* out, PriorityQueueRef Q); 

 

Function newPriorityQueue() creates a new min priority queue object consisting of the integers from 1 to 

n, and ordered according to the values in the array key[1..n].  freePriorityQueue() frees all dynamically 

allocated memory associated with the PriorityQueueRef *pQ, and sets *pQ to NULL.  Function 

getNumElements() returns the number of integers remaining in Q.  getMin() returns the integer (i.e. 

vertex) u for which ][key u  (i.e. distance[u]) is smallest.  It has the precondition 1)(entsgetNumElem ≥Q .  

inQueue() returns 1 (true) if it’s argument u belongs to Q, and returns 0 (false) otherwise.  Function 

deleteMin() deletes the element in Q with smallest key.  It has the precondition: 1)(entsgetNumElem ≥Q .  

decreaseKey() sets ku =][key  if ][key uk < , and does nothing otherwise.  It has the precondition 

) ,(inQueue uQ .  printPriorityQueue() prints the state of Q to the file handle out.  This function is used 

only for diagnostic purposes, so the format in which the internal state of Q is expressed is not specified, 

and is therefore up to you.  

  

Your Graph ADT interface file Graph.h should define constant macros to stand for nil and infinity called 

NIL and INF respectively.  Your Graph module will export the following functions. 
 

/* Constructors-Destructors */ 

GraphRef newGraph(int n); 

void freeGraph(GraphRef *pG); 

 

/* Access functions */ 

int getOrder(GraphRef G); 

int getParent(GraphRef G, int u); 

double getDistance(GraphRef G, int u); 

int getSource(GraphRef G); 

void getPath(GraphRef G, int s, int u, ListRef P); 

 

/* Manipulation procedures */ 

void addDirectedEdge(GraphRef G, int u, int v, double w); 

void Dijkstra(GraphRef G, int s); 

int BellmanFord(GraphRef G, int s); 

 

/* Other Functions */ 

GraphRef copyGraph(GraphRef G); 

void printGraph(FILE* out, GraphRef G); 
 

Function newGraph() returns a reference to a new Graph structure containing n vertices and no edges.  

freeGraph() frees all dynamically allocated memory associated with the GraphRef *pG and sets *pG to 

NULL.  getOrder() returns the number of vertices in G.  getParent() returns the parent of vertex u in G.  

Function getDistance() returns the distance from the most recent source to u.  getSource() returns the most 

recent source vertex to either Dijkstra or BellmanFord.  getPath() assembles a List P consisting of the 

vertices in a minimum weight path from source s to destination u.  It has the preconditions isEmpty(P) 

and getSource(G) s== .  Function addDirectedEdge() adds v to the adjacency list of u, and sets the u
th
 

row, v
th
  column of the weight array to w, establishing a directed edge from u to v of weight w.  Dijkstra() 

performs Dijkstra’s algorithm with source s on a directed graph G which contains no negative weight 

edges.  BellmanFord() performs the Bellman-Ford algorithm with source s on a directed graph G.  It 



returns 1 (true) if no negative weight cycle is reachable from s, and 0 (false) otherwise.  copyGraph() 

returns a copy of Graph G.  Source , distance, and parent fields of the copy are initialized to NIL, INF, 

and NIL respectively, regardless of their values in the G.  In all other respects, the state of the copy 

matches that of G.  printGraph() prints the adjacency list representation of G to the file handle out, 

formatted according to the specifications below.  Functions getParent(), getDistance(), getPath(), 

addDirectedEdge(), Dijkstra(), and BellmanFord() all have preconditions asserting that their various 

vertex parameters are in the range 1 to n, where )(getOrder Gn = .   

 

It is recommended that your Graph.c file contain private functions Initialize() and Relax() as described in 

chapter 24 (pp. 585-586) of the text.  Recall however that when Dijkstra relaxes an edge, it must call 

decreaseKey() on a PriorityQueue of vertices, while Bellman-Ford does not use a PriorityQueue.  

Therefore it is recommended that Graph.c contain two different versions of Relax(), called say Relax1() 

and Relax2() with prototypes 

 
void Relax1(GraphRef G, int u, int v, PriorityQueueRef Q); 

void Relax2(GraphRef G, int u, int v); 

 

to be used by Dijkstra() and BellmanFord() respectively. 

 

The top level client module in this project will be called FindPath, and will be invoked at the command 

line with arguments giving the input and output files: %FindPath infile outfile.   The input file 

will begin with a line containing a single integer giving the number of vertices in the graph, followed by 

some lines of the form: “u v w” which specify the existence of an edge from vertex u to vertex v of 

weight w.  While reading this first section of the file, your program will record whether or not any of the 

edge weights are negative. This section will be terminated by the dummy line “0 0 0”.  After the first 

section is read, your program will print the adjacency list representation of G to the output file, formatted 

as in the examples below.  The second part of the input file will consist of a number of lines of the form 

“s u” which specify a source vertex s and destination vertex u.  This section of the input file will be 

terminated by the dummy line “0 0”.  For each source-destination pair, your program will attempt to find 

a shortest s-u path.  If the graph contains no negative weight edges your program will use Dijkstra’s 

algorithm, otherwise it will use Bellman-Ford.  The output file format is illustrated in the following 

examples. 

 

Input File: 
7 

1 2 1 

1 4 4 

2 5 1 

3 7 2 

5 4 1 

6 2 2 

6 3 1 

6 5 4 

7 6 1 

0 0 0 

1 4 

3 4 

1 7 

0 0 

Output File: 
1: (2, 1.0) (4, 4.0)  

2: (5, 1.0)  

3: (7, 2.0)  

4:  

5: (4, 1.0)  

6: (2, 2.0) (3, 1.0) (5, 4.0)  

7: (6, 1.0)  

 

A shortest path from 1 to 4 of length 3.0 is: 1 2 5 4  

A shortest path from 3 to 4 of length 7.0 is: 3 7 6 2 5 4  

No path from 1 to 7 exists 

 

 

 

 



Observe that the adjacency list representation given above includes the weights of each edge.  Your 

printGraph() function should be written to conform to this format.  Notice also that shortest paths are 

specified by just listing their vertices (with no arrows “->” in between as in pa3.)  The next example 

includes some negative weight edges. 

 

Input File: 
7 

1 2 1 

1 4 4 

2 5 -1 

3 7 -2 

5 4 1 

6 2 2 

6 3 -1 

6 5 4 

7 6 1 

0 0 0 

1 4 

3 4 

1 7 

0 0 

 

Output File: 
1: (2, 1.0) (4, 4.0)  

2: (5, -1.0)  

3: (7, -2.0)  

4:  

5: (4, 1.0)  

6: (2, 2.0) (3, -1.0) (5, 4.0)  

7: (6, 1.0)  

 

A shortest path from 1 to 4 of length 1.0 is: 1 2 5 4  

The SSSG problem is not solvable from source 3 

No path from 1 to 7 exists 

 

 

 

 

Notice that when Bellman-Ford detects a negative weight cycle reachable from the source, the program 

prints a message to the effect that the SSSG problem is not solvable. 

 

Your project will be tested on directed graphs with no more that 1,000 vertices and 100,000 edges in 

which no edge weight exceeds 1,000.  Therefore an adequate value to represent infinity is 100,000,001.  

One problem arises however when a large number is used to represent infinity.  Infinity has the property 

that if any number is added or subtracted from it, the result is still infinity, while no large number standing 

in for infinity has the same property.  This could cause problems with the operation of Bellman-Ford in 

particular, and possibly with Dijkstra also.  You need to find a way to work around these problems when 

they occur.   

 

You are required to submit the following files:  README, Makefile, PriorityQueue.c, PriorityQueue.h, 

PriorityQueueClient.c, List.c, List.h, ListClient.c, Graph.h, Graph.c, GraphClient.c, FindPath.c.  As usual 

README contains a catalog of submitted files and any special notes to the grader.  Makefile should be 

capable of making the executables PriorityQueueClient, ListClient, GraphClient, FindPath, and should 

contain a clean utility which removes all object files.  Let me say it once again: do not submit extra files, 

especially binary files.  You may alter the following Makefile as you see fit: 

 

 
#   Makefile for Graph ADT and related modules. 

#   make                         makes FindPath 

#   make GraphClient             makes GraphClient 

#   make PriorityQueueClient     makes PriorityQueueClient 

#   make ListClient              makes ListClient 

#   make clean                   removes all object and executable files 

 

FindPath : FindPath.o Graph.o PriorityQueue.o List.o 

 gcc -o FindPath FindPath.o Graph.o PriorityQueue.o List.o 

 

GraphClient : GraphClient.o Graph.o PriorityQueue.o List.o 



 gcc -o GraphClient GraphClient.o Graph.o PriorityQueue.o List.o 

 

PriorityQueueClient : PriorityQueueClient.o PriorityQueue.o 

 gcc -o PriorityQueueClient PriorityQueueClient.o PriorityQueue.o 

 

ListClient : ListClient.o List.o 

 gcc -o ListClient ListClient.o List.o 

 

FindPath.o : FindPath.c Graph.h 

 gcc -c -ansi -Wall FindPath.c 

 

GraphClient.o : GraphClient.c Graph.h 

 gcc -c -ansi -Wall GraphClient.c 

 

PriorityQueueClient.o : PriorityQueueClient.c PriorityQueue.h 

 gcc -c -ansi -Wall PriorityQueueClient.c 

 

ListClient.o : ListClient.c List.h 

 gcc -c -ansi -Wall ListClient.c 

 

Graph.o : Graph.c Graph.h PriorityQueue.h List.h 

 gcc -c -ansi -Wall Graph.c 

 

PriorityQueue.o : PriorityQueue.c PriorityQueue.h 

 gcc -c -ansi -Wall PriorityQueue.c 

 

List.o : List.c List.h 

 gcc -c -ansi -Wall List.c 

 

clean : 

 rm -f FindPath GraphClient PriorityQueueClient ListClient\ 

         FindPath.o GraphClient.o PriorityQueueClient.o ListClient.o\ 

         Graph.o PriorityQueue.o List.o 

 

 

 

 

 


