CMPS 101

Midterm 1 Review Problems

- 1. Let f(n) and g(n) be asymptotically non-negative functions which are defined on the positive integers.
 - a. State the definition of f(n) = O(g(n)).
 - b. State the definition of $f(n) = \omega(g(n))$
- 2. State whether the following assertions are true or false. If any statements are false, give a related statement which is true.
 - a. f(n) = O(g(n)) implies f(n) = o(g(n)).
 - b. f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$.
 - c. $f(n) = \Theta(g(n))$ if and only if $\lim_{n \to \infty} (f(n)/g(n)) = L$, where $0 < L < \infty$.
- 3. Prove that $\Theta(f(n)) \cdot \Theta(g(n)) = \Theta(f(n) \cdot g(n))$. In other words, if $h_1(n) = \Theta(f(n))$ and $h_2(n) = \Theta(g(n))$, then $h_1(n) \cdot h_2(n) = \Theta(f(n) \cdot g(n))$.
- 4. Use limits to prove the following (these are some of the exercises at the end of the asymptotic growth rates handout):
 - a. If P(n) is a polynomial of degree $k \ge 0$, then $P(n) = \Theta(n^k)$.
 - b. For any positive real numbers α and β : $n^{\alpha} = o(n^{\beta})$ iff $\alpha < \beta$, $n^{\alpha} = \Theta(n^{\beta})$ iff $\alpha = \beta$, and $n^{\alpha} = \omega(n^{\beta})$ iff $\alpha > \beta$.
 - c. For any positive real numbers a and b: $a^n = o(b^n)$ iff a < b, $a^n = \Theta(b^n)$ iff a = b, and $a^n = \omega(b^n)$ iff a > b.
 - d. $f(n) + o(f(n)) = \Theta(f(n))$.
- 5. Use Stirling's formula: $n! = \sqrt{2\pi n} \cdot \left(\frac{n}{e}\right)^n \cdot (1 + \Theta(1/n))$, to prove that $\log(n!) = \Theta(n \log n)$.
- 6. Use Stirling's formula to prove that $\binom{2n}{n} = \Theta\left(\frac{4^n}{\sqrt{n}}\right)$.
- 7. Consider the following *sketch* of an algorithm called *ProcessArray* which performs some unspecified operation on a subarray $A[p \cdots r]$.

<u>ProcessArray(A, p, r)</u> (Preconditions: $p \ge 1$ and $r \le length[A]$)

- 1. do something which takes constant time.
- 2. if p < r
- $3. q \leftarrow \left\lfloor \frac{p+r}{2} \right\rfloor$
- 4. ProcessArray(A, p, q)
- 5. ProcessArray(A, q+1, r)

Write a recurrence which gives the running time T(n) of this algorithm, when called on the full array $A[1\cdots n]$. Give a tight asymptotic solution to this recurrence.

8. Consider the following algorithm which does nothing but waste time:

WasteTime(n) (pre: $n \ge 1$)
1. if n > 12. for $i \leftarrow 1$ to n^3 3. waste a constant amount of time
4. for $i \leftarrow 1$ to 7

waste a constant amount of time

5. WasteTime $(\lceil n/2 \rceil)$

Write a recurrence which gives the running time T(n) of this algorithm. Give a tight asymptotic solution

9. Use the Master Theorem to find tight asymptotic solutions for the following recurrences.

a.
$$T(n) = 2T(n/4) + \sqrt{n}$$

b. $T(n) = 7T(n/3) + n^2$

to this recurrence.

6.

10. Define T(n) by: T(1) = 0 and $T(n) = T(\lfloor n/2 \rfloor) + 1$ for $n \ge 2$. Use the iteration method to show $T(n) = \lfloor \lg(n) \rfloor$ for all n, whence $T(n) = \Theta(\log(n))$.

11. Define T(n) by the recurrence

$$T(n) = \begin{cases} 5 & n = 1 \\ 10 & n = 2 \\ 3T(\lfloor n/3 \rfloor) + n & n > 2 \end{cases}$$

Show that there exists a c > 0 such that $T(n) \le cn \lg n$ for all $n \ge 3$. Prove this using **induction** on n (not the Master Theorem.) (Note: this problem is a watered down substitution method, i.e. I'm giving you n_0 (namely 3), and you must determine c.)

12. Prove that all trees on n vertices have n-1 edges. Do this by (a) induction on the number of vertices, and (b) by induction on the number of edges.