
CMPS 12B
Introduction to Data Structures
Winter 2009

Programming Assignment 4
Due Sunday March 15, 10:00 pm

In this project you will again recreate the Dictionary ADT from pa2 and lab5, again in C, but now based
on a hash table instead of a linked list. Start by reading the section on hash tables in chapter 13 of the
book (pages 689 through 719.)

So far we have seen two data structures which can form the basis of a Dictionary ADT, namely linked
lists and binary search trees. In the linked list implementation, the worst case run time of the essential
Dictionary operations (insert, delete, and lookup) are all in)(nΘ , where n is the number of pairs in the
dictionary. In the binary search tree implementation, the Dictionary operations all run in time))(log(nΘ ,
provided that the underlying binary search tree is “balanced”. It is possible to do better still using a hash
table as the underlying data structure. In this implementation the Dictionary operations will run in
constant time . The catch is that this is the average case run time. The worst case run time of the
Dictionary operations in a hash table implementation can be as bad as that for a linked list, namely

)1(Θ
)(nΘ .

Hash Tables
A hash table is simply an array which is used to store the data associated with a set of keys. In our
Dictionary ADT we wish to store a set of (key, value) pairs where key and value are non-negative
integers. If the keys all happen to be in the range 0 to 1−N , and N is not too large, one can simply
allocate an array of length N, and store the pair in array index k. This arrangement is called a
direct-address table. The difficulty with direct addressing is obvious: if N too is large, storing an array of
length N may be impractical, or even impossible. Think of an application in which key is an account
number and value is an account balance. Such applications often have account numbers consisting of
between 10 and 15 decimal digits, which makes the set of all possible keys very large indeed.
Furthermore the set S of keys actually stored may be so small relative to the universe U of all possible
keys, that most of the space allocated for the array would be wasted.

),(vk

A hash table T requires much less storage than a direct address table. Specifically the storage
requirements for a hash table can be reduced to)(SΘ , while maintaining the benefit that the dictionary
operations run in (average case) time . To do this we use a hash function h to compute the index (or
slot) where a given pair (k, v) will be stored. Thus a suitable hash function must map the universe
U of all possible keys to the set {0, 1, …,

)1(Θ
)(kh

1−m } of array indices:

}1 , ,1 ,0{: −→ mUh K

We say that the pair (k, v) hashes to the slot in the hash table)(kh)]1(0[−mT K . We also say that
is the hash value of key k. The point of the hash function is to reduce the range of array indices that need
to be handled. Instead of

)(kh

U indices, we need to handle only m indices. Storage requirements are
correspondingly reduced.

There is of course one problem: two keys may hash to the same slot. We call this situation a collision.
Fortunately, there are effective techniques for resolving the conflict created by collisions. The ideal

 1

solution would be to avoid collisions altogether. We might try to achieve this goal through our choice of
hash function h. One possibility is to make h appear to be random, thus avoiding collisions or at least
minimizing their number. The very term “hash”, which evokes images of random mixing and chopping,
captures the spirit of this approach. Of course, a hash function h must be deterministic in the sense that a
given input k should always produce the same output . Since)(kh mU > , and in general U is much
larger than m, there must be at least two keys that have the same hash value, and therefore avoiding
collisions altogether is impossible. Thus, while a well designed random looking hash function can
minimize the number of collisions, we still need a method for resolving the collisions that do occur.

Several methods for resolving collisions will be discussed in class. The method which we will use in this
project is called chaining, and is perhaps the simplest collision resolution technique. In chaining, we put
all the pairs that hash to the same slot into a linked list. Thus the hash table is an array of
linked lists. More precisely, is a pointer to the head of a linked list which stores all the pairs which
hash to slot j. If there are no such elements, will be NULL. The Dictionary ADT operations on a
hash table T are easy to implement when collisions are resolved by chaining. To insert a pair (k, v) into
the Dictionary, we create a new Node storing this pair, then insert that Node at the head of the linked list

. To lookup a given key k, we do a linear search of the list , and return the corresponding
value if found, or UNDEF if not found. To delete the pair with key k, simply splice the corresponding
Node out of the list headed by . The remaining Dictionary operations are equally simple and are
left to the student to design.

)]1(0[−mT K

][jT
][jT

)]([khT)]([khT

)]([khT

At this point the only question left is what to choose as our hash function h. A good hash function should
satisfy (at least approximately) the assumption of simple uniform hashing: each key is equally likely to
hash to any of the m slots, independently of the slot to which any other key has hashed. Unfortunately, it
is often not possible to check this condition in practice, since one may not know the probability
distribution on the universe U from which the keys are drawn. Furthermore the keys may not be drawn
independently from U. In this project U will be the set of non-negative integers {0, 1, 2, …}, and we will
assume that keys are uniformly distributed over this universe. Under these conditions the function

mkkh)(mod=

satisfies the simple uniform hashing condition. Here m is the length of the hash table T, and mod denotes
the remainder operation, i.e. is simply the remainder of k upon division by m. Observe that this
quantity necessarily lies in the range from 0 to

)(kh
1−m , as required. This is the function you will use to

compute hash values in this project. Other possible hash functions and their pros and cons, will be
discussed in class. It is suggested that your Dictionary.c file contain a private constant integer

const int tableSize=100;

establishing the length of the hash table array. The choice here of length 100 is somewhat arbitrary, and
should be changed during testing of your project. In particular, you should see how your Dictionary ADT
performs with small table lengths, i.e. no more than half the number of pairs in the Dictionary, so that
collisions are guaranteed. In C the remainder operation is denoted by the percent symbol: %. Thus
Dictionary.c should also contain a private function which implements the hash function above:

int hash(int k){ return(k%tableSize); }

 2

This function will be used to compute the array index into which a pair with key k is to be stored. The
header file for this project is identical to that found in lab5, and also to the header file for the Binary
Search Tree based Dictionary posted on the website. There is however one ADT operation whose
requirements are relaxed form those in lab5, namely the printDictionary function. Recall that in pa2,
and therefore also in lab5, a text representation of a Dictionary was required to present (key, value) pairs
in the order in which they were originally inserted into the Dictionary. This was easy and natural for the
linked list representation since the list itself maintained the insertion order. Your printDictionary
function in this project should just print out pairs in the order that they appear in the table, i.e. print out
list in order, then list , …, then end by printing list]0[T]1[T]1[−mT in order.

What to turn in
Write the implementation file Dictionary.c as described above based on a hash table data structure.
Also write your own set of test procedures in DictionaryTest.c. The webpage includes the files
Dictionary.h and DictionaryClient.c, which should be submitted unaltered with your project.
Notice that the version of DictionaryClient.c provided here is more complex than the one in lab5.
This version takes two command line arguments giving the names of an input file and an output file
respectively. You can easily infer the input and output file formats by examining the code in
DictionaryClient.c. Three correctly formatted input files together with their corresponding output
files are also provided on the webpage. Do not turn in these files with your project. They are provided
only so that you can test your project on relatively large dictionaries. If you set the tableSize parameter
in your Dictionary.c file to be 50, your output files should look identical to the ones provided. If you
change the tableSize parameter to something other than 50, the Dictionary will most likely look
different when printed, but you should get identical results for lookups and deletes. Again, study the code
in DictionaryClient.c to see what is going on.

A makefile is also provided on the webpage which includes clean and check utilities, and should work for
your project, almost unchanged. The check command has been set to run DictionaryClient on the
input file in3 and write to the output file junk3. This output file name was chosen so as not to overwrite
out3 if it already exists in your pa4 directory. You can alter the check command as you see fit to test
your project. To receive full credit, your project must produce no memory leaks when run under bcheck.
Note also that this makefile should pose no problems with respect to the particular version of make being
used, since it uses no wildcards to generate lists. Also included on the webpage is a Perl script which you
can use to create correctly formatted random input files of any size for this project. Submit the files:

README
Dictionary.c
Dictionary.h
DictionaryTest.c
DictionaryClient.c
makefile
README

to the assignment name pa4. As always start early and ask plenty of questions.

 3

	CMPS 12B
	Winter 2009

