
CMPS 12M
Introduction to Data Structures Lab
Winter 2009

Lab Assignment 2
Due Wednesday January 21, 10:00 pm

The goal of this assignment is to practice using command line arguments, file input-output, and manipulation
of Strings in java. File input-output and command line arguments will be necessary in programming
assignment 1, as well as future assignments.

Command Line Arguments
A java main function always reads the operating system command line from which it was called, and stores
the strings on that line in the args array. Compile the following java program and place it in an executable
jar file called CommandLineArguments (see lab1 to learn how to do this)

// CommandLineArguments.java
public class CommandLineArguments{
 public static void main(String[] args){
 int n = args.length;
 System.out.println("args.length = " + n);
 for(int i=0; i<n; i++) System.out.println(args[i]);
 }
}

then do %CommandLineArguments zero one two three four and observe the output. Run it with several
other sets of strings on the command line. These strings are called command line arguments, and can be
used within a program to specify and modify the program's behavior. Typically command line arguments
will be either strings specifying optional behavior, text to be processed by the program directly, or names of
files to be processed in some way.

File Input-Output
The java.util package contains the Scanner class, and the java.io package contains classes PrintWriter and
FileWriter. These classes perform simple input and output operations on text files. Their usage is illustrated
in the program FileCopy.java below, which merely copies one file to another, i.e. it provides essentially
the same functionality as the unix command cp (with respect to text files only.) As you can see, the Scanner
constructor takes a File object for initialization, which is itself initialized by a String giving the name of an
input file. The Scanner class contains (among others) methods called useDelimiter(), hasNext() and
next(). Read the documentation for Scanner (http://java.sun.com/j2se/1.5.0/docs/api/) to learn about the
proper usage of these methods. The PrintWriter constructor takes a FileWriter object for initialization, which
is in turn initialized by a String giving the name of an output file. PrintWriter contains methods print() and
println() which behave identically to the corresponding methods in System.out, except that output goes
to a file instead of stdout. Note that the FileWriter initialization can fail if no file named args[1] exists in
the current directory. If it fails, it will throw an IOException. This is a type of exception which cannot be
ignored, and therefore function main must either catch the exception, or throw it up the chain of function
calls. (In the case of function main, the "calling function" is the operating system). In this example, we deal
with this problem by declaring main to throw an IOException, which causes the program to quit if the
exception is encountered. Similar comments apply to the initialization of the Scanner object. See the java
documentation for more details.

 1

Compile and run FileCopy.java, and observe that a Usage statement is printed if the user does not provide
at least two command line arguments. This Usage statement assumes that the program is being run from an
executable jar file called FileCopy. All of your programs which take command line arguments should
include such a usage statement.

// FileCopy.java
// Illustrates file IO

import java.io.*;
import java.util.Scanner;

public class FileCopy{
 public static void main(String[] args) throws IOException{
 Scanner in = null;
 PrintWriter out = null;
 String line = null;
 int n;

 if(args.length < 2){
 System.out.println("Usage: FileCopy infile outfile");
 System.exit(1);
 }

 in = new Scanner(new File(args[0]));
 out = new PrintWriter(new FileWriter(args[1]));

 in.useDelimiter("\n");
 while(in.hasNext()){
 line = in.next();
 out.println(line);
 }

 in.close();
 out.close();
 }
}

String Tokenization
A common task in text processing is to parse a string by deleting the surrounding whitespace characters,
keeping just the discrete words or “tokens” which remain. A token is a maximal substring which contains no
whitespace characters. For instance consider the preceding sentence to be a string. The tokens in this string
are listed as: ("A", "token", "is", "a", "maximal", "substring", "which", "contains", "no", "whitespace",
"characters"). Whitespace here is defined to mean spaces, newlines, and tab characters. This is one of the
first tasks that a compiler for any language such as java or C must perform. The source file is broken up into
tokens, each of which is then classified as: keyword, identifier, punctuation, etc. The String class, contains a
method called split() which decomposes a string into tokens, then returns a String array containing the tokens
as its elements. Compile and run the following program FileTokens.java, which illustrates these operations.

// FileTokens.java
// Illustrates file IO and tokenization of strings.

import java.io.*;
import java.util.Scanner;

class FileTokens{
 public static void main(String[] args) throws IOException{
 Scanner in = null;

 2

 PrintWriter out = null;
 String line = null;
 String[] token = null;
 int i, n, lineNumber = 0;

 if(args.length < 2){
 System.out.println("Usage: FileIO infile outfile");
 System.exit(1);
 }

 in = new Scanner(new File(args[0]));
 out = new PrintWriter(new FileWriter(args[1]));

 in.useDelimiter("\n");
 while(in.hasNext()){
 lineNumber++;
 line = in.next() + " "; // add extra space so split works right
 token = line.split("\\s+"); // split line around white space
 n = token.length;
 out.println("Line " + lineNumber + " contains " + n + " tokens:");
 for(i=0; i<n; i++){
 out.println(token[i]);
 }
 out.println();
 }

 in.close();
 out.close();
 }
}

What to turn in
Write a java program called FileReverse.java which takes two command line arguments giving the names of
the input and output files respectively (following the preceding examples). Your program will read each line
of input, parse the tokens, then print each token backwards to the output file on a line by itself. For example
given a file called in containing the lines:

abc defg
hi
jkl mnop q

rstu v
wxyz

the command %FileReverse in out will create a file called out containing the lines:

cba
gfed
ih
lkj
ponm
q
utsr
v
zyxw

Your program will contain a recursive method called stringReverse() with the following signature:

 3

public static String stringReverse(String s, int n)

This function will return a String which is the reversal of the first n characters of s. It should be based on
the reverseArray() method discussed in class, and on the writeBackward() method discussed in the text.
Use stringReverse() to perform the reversal of tokens from the input file.

Submit the files: README, makefile, and FileReverse.java to the assignment name lab2.

 4

	CMPS 12M
	Winter 2009

