
CMPS 12M 
Introduction to Data Structures Lab 
Winter 2009 
 

Lab Assignment 1  
Due Friday January 16, 10:00 pm 

 
The purpose of this assignment is threefold: get a basic introduction to the Andrew File System (AFS) 
which is the file system used by your UCSC computer account, learn how to create an executable jar file 
containing a java program, and learn to automate compilation and other tasks using makefiles. 
 
AFS 
Logon to your IC Unix account (unix.ic.ucsc.edu).  (If you don’t know how to do this, you will need to 
attend a lab session to learn how.)  From within your home directory, create a directory called private, 
then set access permissions on the new directory so that other users cannot view it’s contents.  The unix 
prompt is depicted below as %.  Those lines without the unix prompt are what is typed at you by the 
operating system. 
 
%mkdir private 
%fs setacl private system:authuser none 
%fs setacl private system:anyuser none 
%fs listacl private 
Access list for private is 
Normal rights: 
  foobar rlidwka 
 
Here foobar will be replaced by your own username.  The last three lines say that your access rights to 
directory private are rlidwka which means: read, list, insert, delete, write, lock, and administer.  In 
other words you have all rights in this directory, while other users have none.  This creates a space where 
your own work can be kept secure and confidential.  If you are unfamiliar with any unix command, you 
can view its manual page by typing: %man <command name>.  For instance %man mkdir brings up the man 
pages for mkdir.  Man pages can be notoriously cryptic, but it is best to get used to reading them as soon 
as possible. 
 
Under AFS, fs denotes a file system command, setacl sets the access control list (ACL) for a specific 
user or group of users, and listacl displays the access lists for a given directory.  In general 
 
%fs setacl <some directory> <some username> <some subset of rlidwka or none>     
 
sets the access rights for a directory and a user.  Note that setacl can be abbreviated as sa and  listacl 
can be abbreviated as la.  For instance do la on your home directory: 
 
%fs la . 
Normal rights: 
  system:anyuser rl 
  foobar rlidwka 
 
Here again you will see your own username in place of foobar.  Note that . always refers to your current 
working directory, i.e. the directory in which you are presently located.  (Also .. refers to the parent of 
your current working directory, while ~ refers to your home directory.)  The group system:authuser 

 1



refers to anyone with an IC Unix computer account, and system:anyuser refers to anyone anywhere in 
the world running AFS. 
 
Now that you have a protected space for your files, cd (change directory) into that directory, and organize 
your files for this course by creating a hierarchy of directories. 
 
%cd private 
%mkdir cmps012m 
%mkdir cmps012b 
%cd cmps012m 
%mkdir lab1 
 
It is not necessary to reset the ACL’s on these child directories, since they are governed by the parent 
directory private.  To get a more comprehensive list of AFS commands do %fs help.  For instance you 
will see that %fs lq  shows your quota and usage statistics.  To learn more about AFS commands go to 
http://www.cs.unc.edu/cgi-bin/howto?howto=afs-intro.   
 
Jar Files 
Use your favorite editor to copy the following file to ~/private/cmps012m/lab1.  (Recall ~ always 
refers to your home directory.) 
 
// hello. java 
// Prints `Hello World' to stdout, then prints out some 
// environment information. 
 
import static java.lang.System.*; 
 
class hello{ 
 
   public static void main( String[] args ){ 
      String os = System.getProperty("os.name"); 
      String osVer = System.getProperty("os.version"); 
      String jre = System.getProperty("java.runtime.name"); 
      String jreVer = System.getProperty("java.runtime.version"); 
      String jvm = System.getProperty("java.vm.name"); 
      String jvmVer = System.getProperty("java.vm.version"); 
      String home = System.getProperty("java.home"); 
      double freemem = Runtime.getRuntime().freeMemory(); 
      long time = currentTimeMillis(); 
 
      System.out.println("Hello, World!"); 
      System.out.println("Operating system: "+os+" "+osVer); 
      System.out.println("Runtime environment: "+jre+" "+jreVer); 
      System.out.println("Virtual machine: "+jvm+" "+jvmVer); 
      System.out.println("Java home directory: "+home); 
      System.out.println("Free memory: "+freemem+" bytes"); 
      System.out.printf("Time: %tc.%n", time); 
   } 
} 
 
You can compile this in the normal way by doing %javac hello.java then run with %java hello.  Java 
provides a utility called jar for creating compressed archives of .class files.  This utility can also be 
used to create an executable jar file which can then be run by just typing its name, i.e. no need to type 
java first.  To do this you must first create a manifest file which specifies the entry point for program 

 2



execution, i.e. which .class file contains the main method to be executed.  Create a file called Manifest 
containing just one line: 
 
Main-class: hello 
 
If you don’t feel like opening up an editor to do this you can just type 
 
%echo Main-class: hello > Manifest 
 
The unix command  echo prints text to stdout, and > redirects the output to a file.  Now do 
 
%jar cvfm myHello Manifest hello.class 
 
The first group of characters after jar are options.  (c: create a jar file, v: verbose output, f: second 
argument gives the name of the jar file to be created, m: third argument is a manifest file.)  Consult the 
man pages to see other options to jar.  Following the manifest file is the list of .class files to be 
archived, which in our example consists of just one file, hello.class.  The name of the executable jar 
file (second argument) can be anything you like.  In this example it is called myHello to emphasize that it 
need not have the same name as the corresponding .class file.  (For that matter, the manifest file need 
not be called Manifest.)  At this point we should be able to run the executable jar file myHello by just 
typing its name, but there is one problem.  This file is not recognized by unix as being executable.  To 
remedy this do 
 
%chmod +x myHello  
 
As usual, consult the man pages to understand what chmod does.  Now type %myHello to run the program.  
The whole process can be accomplished by typing five lines: 
 
%javac –Xlint hello. java 
%echo Main-class: hello > Manifest 
%jar cvfm myHello Manifest hello.class 
%rm Manifest 
%chmod +x myHello 
 
Notice we have removed the (now unneeded) manifest file.  Note also that the –Xlint option to javac 
enables recommended warnings.  The only problem with the above procedure is that it’s a big hassle to 
type all those lines.  Fortunately there is a unix utility which can automate this and other processes.   
 
Makefiles 
Large programs are often distributed throughout many files which depend on each other in complex ways.  
Whenever one file changes, all the files which depend on that file must be recompiled.  When working on 
such a program it can be difficult and tedious to keep track of all the dependency relationships.  The make 
utility automates this process.  Make looks at dependency lines in a file named “makefile” stored in the 
current working directory.  The dependency lines indicate relationships among files, specifying a target 
file that depends on one or more prerequisite files.  If a prerequisite file has been modified more recently 
than its target file, make updates the target file based on construction commands that follow the 
dependency line.  Make normally stops if it encounters an error during the construction process.  Each 
dependency line has the following format. 
 
target: prerequisite-list 
 construction-commands 

 3



 
The dependency line is composed of the target and the prerequisite-list separated by a colon.  The 
construction-commands line must start with a tab character and must follow the dependency line.  Start 
an editor and copy the following lines into a file called “makefile”. 
 
# A simple makefile 
myHello: hello.class 
 echo Main-class: hello > Manifest 
 jar cvfm myHello Manifest hello.class 
 rm Manifest 
 chmod +x myHello 
 
hello.class: hello.java 
 javac -Xlint hello.java 
 
clean: 
 rm -f hello.class myHello 
 
submit: README makefile hello.java 
 submit cmps012m-pt.w09 lab1 README makefile hello.java 
 
Anything following # on a line is a comment and is ignored by make.  The second line says that the target 
myHello depends on hello.class.  If hello.class exists  and is up to date, then myHello can be 
created by doing the construction commands which follow.  (Don’t forget that all indentation is 
accomplished via the tab character.)  The next target is hello.class which depends on hello.java.  
The next target clean, is sometimes called a “phony target” since it doesn’t depend on anything, but just 
runs a command.  Likewise the target submit does not compile anything, but does have some 
dependencies.   Any target can be built (or perhaps performed if it is a phony target) by doing %make 
<target name>.  Just typing %make makes the first target in the Makefile.  Try this by doing %make 
clean to get rid of all your previously compiled stuff, then do %make and see the output.  
 
The make utility has a macro facility that enables you to create and use macros within a makefile.  The 
format of a macro definition is  ID = list where ID is the name of the macro and list is a list of 
filenames.  Then ${list} can then be used to refer to the list of files.  Move your existing makefile to a 
temporary file, then start your editor and copy the following lines to a new file called “makefile”. 
 
# A simple makefile with macros 
JAVASRC    = hello.java 
SOURCES    = README makefile ${JAVASRC} 
MAINCLASS  = hello 
CLASSES    = hello.class 
JARFILE    = myHello 
JARCLASSES = ${CLASSES} 
SUBMIT     = submit cmps012m-pt.w09 lab1 
 
all: ${JARFILE} 
 
${JARFILE}: ${CLASSES} 
 echo Main-class: ${MAINCLASS} > Manifest 
 jar cvfm ${JARFILE} Manifest ${JARCLASSES} 
 rm Manifest 
 chmod +x ${JARFILE} 
 
${CLASSES}: ${JAVASRC} 
 javac -Xlint ${JAVASRC} 
 

 4



clean: 
 rm ${CLASSES} ${JARFILE} 
 
submit: ${SOURCES} 
 ${SUBMIT} ${SOURCES} 
 
Run this new makefile and observe that it is equivalent to the previous one.  The macros define text 
substitutions which take place before make interprets the file.  Study this new makefile until you 
understand exactly what substitutions are taking place.  Now create your own Hello World program and 
call it hello2.java.  It can say anything you like, but just have it say something different than the 
original.  Add hello2.java to the JAVASRC list, and add hello2.class to the CLASSES list.  Also change 
MAINCLASS to hello2.   
 
# Another makefile with macros 
JAVASRC    = hello.java hello2.java 
SOURCES    = README makefile ${JAVASRC} 
MAINCLASS  = hello2 
CLASSES    = hello.class hello2.class 
JARFILE    = myHello 
JARCLASSES = ${CLASSES} 
SUBMIT     = submit cmps012m-pt.w09 lab1 
 
all: ${JARFILE} 
 
${JARFILE}: ${CLASSES} 
 echo Main-class: ${MAINCLASS} > Manifest 
 jar cvfm ${JARFILE} Manifest ${JARCLASSES} 
 rm Manifest 
 chmod +x ${JARFILE} 
 
${CLASSES}: ${JAVASRC} 
 javac -Xlint ${JAVASRC} 
 
clean: 
 rm ${CLASSES} ${JARFILE} 
 
submit: ${SOURCES} 
 ${SUBMIT} ${SOURCES} 
 
This new makefile now compiles both Hello World classes (even though neither one depends on the 
other.)  However the program execution entry point has been changed to be the main method in your 
hello2.java.  Macros make it easy to make changes like this, so learn to use them.  To learn more about 
makefiles see “A Short Guide to Makefiles” online at : 
 
                http://www.cs.duke.edu/~ola/courses/programming/Makefiles/Makefiles.html 
 
What to turn in 
All files you turn in for this and other assignments (in both 12b and 12M) should begin with a comment 
block giving your name, IC Unix username, class, date, and a short description of its role in the project, 
followed by the file name, and any special instructions for compiling and/or running it.  Create one more  
file called README, which is just a table of contents for the assignment.  In general README lists all 
the files being submitted (including README) along with any special notes to myself or the grader.  
Submit the following files to the assignment name lab1: README, makefile, hello.java, hello2.java.  If 
you are unfamiliar with the submit command see my cmps 12A/L webpage from Winter 2008: 
 

 5



                http://www.soe.ucsc.edu/classes/cmps012a/Winter08/lab1.pdf 
 
You can either type the submit command directly: 
 
%submit cmps012m-pt.w09 lab1 README makefile hello.java hello2.java 
 
or use the makefile itself: 
 
%make submit 
 
Your makefile can be with or without macros, although the macro version is recommended.  In any case 
your makefile should make both class files (hello.class and hello2.class), and an executable jar file 
called myHello which runs your hello2.class.   
 
 
 
 

 6


	CMPS 12M
	Winter 2009

