
 1

CMPS 12L

Introduction to Programming Lab

Winter 2008

Lab Assignment 6

Due Friday March 7, 10:00 pm

The purpose of this assignment is to introduce the C programming language, including standard input-

output functions. Begin by reading the first six chapters “C Programming Notes” by Steve Summit which

can be found at http://www.eskimo.com/%7Escs/cclass/notes/top.html. Six chapters may

sound like a lot, but much of it can be skimmed, since it is largely a review of topics already covered.

You will find that C is very similar to Java when it comes to things like arithmetic expressions, control

structures, and function calls. One area where the two languages differ significantly is in the way they do

input and output. The best place to start is, as usual, the HelloWorld program:

/* HelloWorld.c */
#include<stdio.h>

int main(){
 printf("Hello, World!\n");
 return 0;
}

Copy this program to a file called HelloWorld.c, then compile it by doing

% gcc –o HelloWorld HelloWorld.c

The unix command gcc invokes the Gnu C Compiler, which is an open source C compiler freely

available for most platforms. The –o option to gcc tells the compiler what to call the executable object

file, in this case HelloWorld. If you leave out the option –o HelloWorld, the executable will be

called a.out. The last thing on the line is the source code file name, i.e. HelloWorld.c. Do % ls and

you should see the new file HelloWorld in your current directory. Run the executable by typing its

name at the command line as follows:

% HelloWorld
Hello, World!
%

Recall that to run a Java program we needed to type: % java program_name (unless we’ve placed the

Java program in an executable jar file, as in the previous lab.) As we see, to run a C program, one need

only type the name of the executable file. Why this difference? Java programs are executed by a

“simulation” of a computer called the Java Virtual Machine (JVM). In a Unix environment, the JVM is

invoked by the command % java. Thus % java program_name runs the JVM with one command

line argument, i.e. the name of your executable object file. This additional layer of abstraction is not

present for C programs, since there is no simulation - you run the object file directly on the computer

hardware.

The first thing to notice in the source file HelloWorld.c is that there is no class keyword. Java is

known as an Object Oriented Programming (OOP) language, meaning that data structures and the

procedures which operate on them are grouped together into one language construct, called the class.

 2

Common behavior amongst classes is specified explicitly through the mechanism of inheritance. The C

language however does not directly support OOP (although OOP can be implemented with some effort).

C is known as a procedural programming language, which means that data structures and functions are

separate language constructs. There are no classes, no objects, and no inheritance. Most control

structures such as loops (while, do-while, for), branching (if, if-else, switch), and function calls are

virtually identical in the two languages.

Comments in C are specified by bracketing them between the strings /* and */, and may span several

lines. For instance

/* comment */

or
/*
 comment
 comment
*/

or
/*
* comment
* comment
* comment
*/

are all acceptable styles. Note that the single line // comment, familiar from Java, is not valid in

standard C, although the gcc compiler does accept this comment form by default. Any line beginning

with # is a preprocessor directive. The preprocessor performs the first phase of compilation, during

which these directives, which are literal text substitutions, are executed, making the program ready for

later stages of compilation. The line #include<stdio.h> inserts the library header file stdio.h which

specifies functions for performing standard input-output operations.

A C program must contain exactly one function called main(), which is the entry point for program

execution. The general skeleton for main() is

int main(){
 /* variable declarations */
 /* executable statements */
 return 0;
}

Observe that function main() has return type int. A return value of 0 indicates to the caller (namely the

operating system) that execution was nominal and without errors. Typically main will call other

functions, which may in turn call other functions. Function definitions in C look very much like they do

in Java.

DataType FunctionName(DataType Variable1, DataType Variable2, ...){
 /* local variable declarations */
 /* executable statements */
 /* return statement (provided return type is not void) */
}

One important difference however is that local variable declarations must appear at the beginning of the

function body, and may not be interspersed with executable statements, as they can in Java.

 3

The function printf() prints formatted text to stdout, which as you know, is the data stream connected

to the screen by default. printf() belongs to the library stdio.h. Its first argument is known as a

format string and consists of two types of items. The first type is comprised simply of characters which

will be printed to the screen. The second type, known as format specifiers, define the way the remaining

arguments are to be printed. A format specifier consists of a percent sign followed by a format code.

There must be exactly the same number of format specifiers as there are remaining arguments, and the

format specifiers are matched with the remaining arguments in order. For example

printf("There are %d days in %s\n", 30, "April");

prints the text

There are 30 days in April

Some common format specifiers are:

%c character
%d signed decimal integer
%f floating point number
%s string of characters
%e floating point number in scientific notation
%% prints a percent sign

See a good reference on C, such as the URL mentioned above, for other format specifiers. Note that Java

contains a method System.out.printf() which behaves exactly like C’s printf(). The following

example prints values of some local variables, along with the usual hello message.

/* HelloWorld2.c */
#include<stdio.h>

int main(){
 int a = 6;
 double x = 2.3;
 char ch = '$';
 char hello_string[] = "Hello, World!";

 printf("a = %d, x = %f, ch = %c\n", a, x, ch);
 printf("%s%c", hello_string, '\n');

 return 0;
}

Notice that a string in C is just a char array, and is initialized in much the same way as a String in Java.

Also notice that when declaring an array in C, the brackets go after the array name, not after the data type.

The output of the above program is:

a = 6, x = 2.300000, ch = $
Hello, World!

The library stdio.h also includes a function called scanf(), which is a general purpose input function

that reads the stream stdin normally associated with the keyboard, and stores the information in the

variables in its argument list. It can read all the built-in data types and automatically convert them to the

 4

proper internal format. The first argument to scanf() is a format string consisting of three types of

characters: format specifiers, whitespace characters, and non-whitespace characters. The format

specifiers consist of a percent sign followed by a format code, and tell scanf() what type of data is to be

read. For example %s reads a string while %d reads an integer. Some common format codes are:

%c char
%d int
%f float
%lf double
%s string (i.e. char array)

See a good C reference for other scanf() codes, which are similar but not identical to printf()'s codes.

(Note the URL mentioned at the beginning of this document does not cover scanf().) A good side-by-

side comparison of printf()’s and scanf()’s format codes can be found at

http://irc.essex.ac.uk/www.iota-six.co.uk/c/c2_printf_and_scanf.asp

The format string is read left to right and the characters are matched, in order, with the remaining

arguments to scanf(). A whitespace character (i.e. space, newline, or tab) in the format string causes

scanf() to skip over one or more whitespace characters in the input stream. In other words, one

whitespace character in the format string will cause scanf() to read, but not to store, any number

(including zero) of whitespace characters up to the first non-whitespace character. A non-whitespace

character in the format string causes scanf() to read and discard a single matching character in the input

stream. For example, the control string " %d, %s" causes scanf() to first skip any number of leading

whitespace characters, then read one integer, then read and discard one comma, then skip any number of

whitespace characters, then read one string. If the specified character is not found, scanf() will

terminate. All the variables receiving values through scanf() must be passed by reference, i.e. the

address of each variable receiving a value must be placed in the argument list. In C, the "address-of"

operator & returns the address of a variable. Thus if x is a variable, then the expression &x evaluates to

the address in memory referred to by the variable x. The following program asks the user for three

integers, then echoes them back to the screen.

/* BasicIO.c */
#include<stdio.h>
#include<stdlib.h>
int main(void){
 int x, y, z;
 printf("Enter three integers separated by");
 printf(" commas, then press return: ");
 scanf(" %d, %d, %d", &x, &y, &z);
 printf("The integers entered were %d, %d, %d\n", x, y, z);
 return 0;
}

A sample run of this program looks like

Enter three integers separated by commas, then press return: 12,-7, 13
The integers entered were 12,-7, 13

Running again, but this time leaving out the separating commas in the input line gives

 5

Enter three integers separated by commas, then press return: 12 -7 13
The integers entered were 12, 4, -4261060

Since the comma separating the first and second integers was left out scanf() read the first integer, then

expected to read and discard a comma but failed to do so, then just returned without reading anything else.

The values printed for y and z are the random data stored in uninitialized variables, and will no doubt be

different when you run the program. Thus we see that scanf() is intended for reading formatted input.

(This is what the "f" it its name stands for). The scanf() function returns a number equal to the number

of fields which were successfully assigned values. That number can be tested and used within the

program, as the following example illustrates.

/* BasicIO2.c */
#include<stdio.h>
#include<stdlib.h>
int main(void){
 int n, i;
 double x[3];

 printf("Enter three doubles separated by ");
 printf("spaces, then press return: ");
 n = scanf(" %lf %lf %lf", &x[0], &x[1], &x[2]);
 printf("%d numbers were successfully read: ", n);
 for(i=0; i<n; i++){
 printf("%f ", x[i]);
 }
 printf("\n");
 return 0;
}

Notice how the double array x[] is declared in this program, and how this differs from the way it’s done

in Java. Also notice that scanf()'s format code for a double is %lf, while printf()'s code for double

is %f. Some sample runs of this program follow:

% BasicIO2
Enter three doubles separated by spaces, then press return: 1.2 3.4 G
2 numbers were successfully read: 1.200000 3.400000
% BasicIO2
Enter three doubles separated by spaces, then press return: monkey at the keyboard!
0 numbers were successfully read:

If an error occurs before the first field is assigned, then scanf() returns the pre-defined constant EOF.

Reading the end-of-file character is considered to be such an error. You can place an end-of-file character

into the input stream by typing control-D. The value of EOF is always a negative integer and is defined

in the header file stdlib.h. Evidently the value of EOF on my system is -1, as the following test run

illustrates.

% BasicIO2
Enter three doubles separated by spaces, then press return: ^D
-1 numbers were successfully read:

 6

What to turn in

Write a C program called Sphere.c that reads in one double value, then prints out the volume and

surface area of the sphere whose radius is the value entered. Define a constant value for π in your

program by including the declaration and assignment statement

const double pi = 3.141592654;

at the beginning of function main(). The formulas for volume and surface area of a sphere are:

Volume π
3

4
=

3r

Surface Area π4= 2r

Implement these formulas in C just as you would in Java, keeping in mind that an expression like

4.0/3.0 indicates double division, while 4/3 indicates integer division. The standard C library math.h

contains a function called pow() that returns its first argument raised to the power of its second argument,

i.e. pow(a, b) returns ba . Put the line #include<math.h> at the beginning of your program if you

want to use this function.

Your program should behave as follows on sample input:

% Sphere
Enter the radius of the sphere: 9
The volume is 3053.628060 and the surface area is 1017.876020.
% Sphere
Enter the radius of the sphere: 115
The volume is 6370626.303536 and the surface area is 166190.251397.

Submit your program to the assignment name lab6, and perform the usual checks to make sure that it was

received.

