
 1

CMPS 12L

Introduction to Programming Lab

Winter 2008

Lab Assignment 5

Due Friday February 29, 10:00 pm

In this assignment you will learn how to create an executable jar file containing a java program, and learn

how to automate compilation and other tasks using Makefiles.

Jar Files

Recall the basic program HelloWorld.java from lab1:

// HelloWorld.java

class HelloWorld{

 public static void main(String[] args){

 System.out.println("Hello, world!");

 }

}

You can compile this in the normal way by doing %javac HelloWorld.java then run with %java

HelloWorld. (Remember that % represents the Unix prompt.) Java provides a utility called jar (Java

archive) for creating compressed archives of .class files. This utility can also be used to create an

executable jar file which can be run by just typing its name. In particular, there will be no need to type

java at the command line when invoking the program. To do this you must first create a Manifest file

that specifies the entry point for program execution, i.e. which .class file contains the main() method

to be run. Create a file called Manifest containing just one line:

Main-class: HelloWorld

If you don’t feel like opening up an editor to do this, you can just type

% echo Main-class: HelloWorld > Manifest

As you learned in some previous lab assignments, the Unix command echo prints text to stdout, and the

output redirect operator > assigns stdout to go to a file, in this case Manifest, rather than the screen.

Now do

% jar cvfm myHello Manifest HelloWorld.class

The first group of characters after jar are options. (c: create a jar file, v: verbose output, f: second

argument gives the name of the jar file to be created, m: third argument is a manifest file.) Consult the

man pages to see other options to jar. Also see

http://java.sun.com/developer/Books/javaprogramming/JAR/basics/

to learn some of the many uses of jar files. Following the manifest file is the list of .class files to be

archived, which in our example consists of just one file. The name of the executable jar file (second

argument) can be anything you like. In this example it is called myHello to emphasize that it need not

 2

have the same name as the corresponding .class file. (For that matter, the manifest file need not be

called Manifest.) However, there is really no reason not to call the jar file HelloWorld in this case,

so instead let us do

% jar cvfm HelloWorld Manifest HelloWorld.class

Before we can run the jar file HelloWorld, we must first make it executable (by you) by doing

% chmod u+x HelloWorld

Re-read lab2 if any of this is unfamiliar. Now type

 % HelloWorld

to run the program, and observe we did not need to type java at the command line. The whole process

can be accomplished by typing five Unix commands:

% javac –Xlint HelloWorld.java

% echo Main-class: HelloWorld > Manifest

% jar cvfm HelloWorld Manifest HelloWorld.class

% rm Manifest

% chmod u+x HelloWorld

Notice we have removed the (now unneeded) Manifest file. Note also that the –Xlint option to javac

enables all recommended warnings. You can repeat the above process with any of the Java programs

we’ve studied so far in this course, or any of your own projects. The only problem is that it’s a big hassle

to type all those lines. Fortunately there is a Unix utility which can automate this, and many other

compilation processes.

Makefiles

Large programs are often distributed throughout many files which depend on each other in complex ways.

Whenever one file changes, all the files which depend on that file must be recompiled. This is true in

Java, C, C++, and most other languages. When working on such a program, it can be difficult and tedious

to keep track of all the dependency relationships. The make utility automates this process. Make looks at

dependency lines in a file named Makefile stored in your current working directory. The dependency

lines indicate relationships among files, specifying a target file that depends on one or more prerequisite

files. If a prerequisite file has been modified more recently than its target file, make updates the target file

based on construction commands that follow the dependency line. Make normally stops if it encounters

an error during the construction process. Each dependency line has the following format.

target: prerequisite-list

 construction-commands

The dependency line is composed of the target and the prerequisite-list separated by a colon. The

construction-commands line must start with a tab character, and must follow the dependency line. Start

an editor and copy the following lines into a file called Makefile.

A simple Makefile for the HelloWorld program

HelloWorld: HelloWorld.class

 echo Main-class: HelloWorld > Manifest

 jar cvfm HelloWorld Manifest HelloWorld.class

 3

 rm Manifest

 chmod u+x HelloWorld

HelloWorld.class: HelloWorld.java

 javac -Xlint HelloWorld.java

clean:

 rm –f HelloWorld.class HelloWorld

submit: Makefile HelloWorld.java

 submit cmps012l-pt.w08 lab5 Makefile HelloWorld.java

Anything following # on a line is a comment and is ignored by make. The second line says that the target

HelloWorld depends on HelloWorld.class. If HelloWorld.class exists, and is up to date, then

HelloWorld can be created by doing the construction commands which follow. (Don’t forget that all

indentation is accomplished via the tab character.) The next target is HelloWorld.class which

depends on HelloWorld.java. The next target clean, is an example of what is called a phony target

since it doesn’t depend on anything, but just runs a command. Likewise the target submit doesn’t

compile anything, but does have some dependencies. Any target can be built (or perhaps performed if it

is a phony target) by doing simply

% make target-name

where target-name is any target in the Makefile. Just typing % make by itself makes the first target

in the Makefile. Try doing % make clean to get rid of all your previously compiled stuff, then do

% make

again to see the compilation performed from scratch. Notice the clean target says to remove some files

using the Unix command rm. The –f option to rm is used here to suppress any error messages that might

arise if the files to be removed do not exist. See the man pages for rm for more options.

What to turn in

This Makefile can be rewritten to work on any Java program by just replacing HelloWorld

everywhere you see it by the appropriate program name. Write a Makefile that creates an executable jar

file for the program lawn.java from programming assignment 1. This jar file should itself be called

lawn. Your Makefile will include targets called clean and submit, as in the above example. Use this

Makefile to resubmit lawn.java, along with the Makefile itself, to the assignment name lab5.

Perform the usual checks to make sure everything was submitted correctly.

