
 1

CMPS 12A
Introduction to Programming
Spring 2010

Programming Assignment 6
Due Thursday June 3, 10:00 pm

In this assignment you will complete the Sudoku solver you began in programming assignment 5. Your
program, which will be called Sudoku.java, will read from an input file whose name is given on the
command line, solve the puzzle encoded in that file, print the original puzzle and its solution to standard
output, then quit. The input and output formats, and command line interface will be exactly those you
implemented in pa5.

Required Features
There are many techniques for solving Sudoku puzzles, and you should read the Wikipedia article
mentioned in pa5, and its references, to learn about them. In this project you will implement a strategy
called “candidate elimination”. Basically this means that for each cell in the puzzle, you keep track of
exactly which numbers remain as possible candidates for that cell.

A Sudoku Puzzle

 5 3 4
 8 3 9 1
6 1 2 8 7

 2 7
 4 1 7 8
7 9

 1 7 4 5 8
 6 3 9 7
2 9 5

Solution

9 2 7 5 3 6 8 1 4
4 8 3 9 7 1 5 2 6
6 1 5 4 2 8 7 9 3

1 6 8 3 5 9 2 4 7
5 4 2 1 6 7 3 8 9
7 3 9 2 8 4 1 6 5

3 9 1 7 4 2 6 5 8
8 5 4 6 1 3 9 7 2
2 7 6 8 9 5 4 3 1

For example, starting with the initial unfilled grid above, we may conclude that cell (8, 5) (which means
row 8, column 5) cannot contain anything already in row 8 (namely 6, 3, 9, or 7), already in column 5 (3,
2, 4, or 9), and already in its “box” (3, 4, 5, 6, 7, or 9). Thus the only possibilities left for cell (8, 5) are
the numbers 1 and 8. Similarly one can check that the remaining candidates for cell (3, 9) are 3 and 5,
and cell (5, 5) must be either 5 or 6. Also notice that cells (7, 6) and (1, 1) have only one candidate
remaining, namely 2 and 9 respectively, and therefore those values can be filled in. Once new values are
entered, they can be used to eliminate candidates in their row, column, and box. Thus one can make
several passes over the puzzle, listing the possible candidates for unfilled cells, filling in the cells with
only one candidate, then using those new entries to impose additional constraints on the other cells by
eliminating some of their remaining candidates. This process continues until all cells are filled and the
puzzle is solved. Note that this process works for the so-called “easy Sudoku”, but not for more difficult
instances of the puzzle. You may assume that all testing we do will be on easy Sudoku puzzles.

Your program will keep track of the remaining candidates for each cell by using a 3-dimensional int
array. If you call this array possible for instance, its declaration would be

int[][][] possible = new int[10][10][10];

 2

It is recommended (though not required) that you avoid 0 as a row or column index in this array, just as
was recommended in pa5 for the 2-dimensional array representing the puzzle grid itself. However, as
explained below, “level” 0 in this array can be put to good use. How will array possible keep track of
the remaining candidates for each cell in the puzzle grid? For each k in the range 91 ≤≤ k , the value
stored in possible[i][j][k] will equal 1 if k is a remaining candidate for cell (i, j), and will equal 0
if k is not a remaining candidate for cell (i, j). The value stored in possible[i][j][0] will be the
number of remaining candidates for cell (i, j). Initialization of array possible should proceed as
follows:

• If cell (i, j) is initially unfilled: set possible[i][j][0] 9= and possible[i][j][k] 1= for
all k in the range 91 ≤≤ k .

• If cell (i, j) is initially filled with the number m (where 91 ≤≤ m): set possible[i][j][0] 1= ,
possible[i][j][m] 1= , and possible[i][j][k] 0= for all mk ≠ in the range 91 ≤≤ k .

In addition to the four methods mentioned in the pa5 project description, two methods are required in this
project with the following names and signatures.

static void updatePossible(int[][] G, int[][][] P)
static void updateGrid(int[][] G, int[][][] P)

Method updatePossible() will use the entries in the puzzle grid G to eliminate candidates from the
possible array, known locally as P. Following the above example, updatePossible() would set
P[8][5][k] equal to 0 for =k 2, 3, 4, 5, 6, 7, and 9. The value stored in P[8][5][k] should retain its
initial value of 1 for =k 1, and =k 8 since these are the remaining possibilities for cell (8, 5). Finally,
P[8][5][0] should be reduced from its initial value of 9 to 2, since 7 candidates have been eliminated
and 2 remain. Note that method updatePossible() alters its array parameter P, but not G. Method
updateGrid() will fill currently unfilled cells in the puzzle grid G whose correct values can be deduced
from the information in P. Observe that this method alters array parameter G, but not P.

Method main() will perform all the necessary initialization of the puzzle array grid as well as array
possible. Array grid will be initialized by calling method getGrid() from pa5. You may choose to
initialize array possible within main(), or you may write a special purpose method of your own to do
this. After initialization is complete, function main() will print the unfinished puzzle by calling
printGrid(), then enter a loop resembling

while(!isFilled(grid)){
 updatePossible(grid, possible);
 updateGrid(grid, possible);
}

When this loop terminates, the puzzle has no empty cells, and so is presumably solved if your update
methods work properly. All that remains is to call printGrid() one last time to print out the solved
puzzle.

Remarks
Most students will find this to be a challenging project, so you are urged to begin early. Break the project
into smaller manageable pieces, build and test the pieces one at a time and slowly assemble the entire
program. Once a method is written, test it by calling it on specific grid and possible arrays which you

 3

prescribe, then print out the current state of both arrays to see if your function is having the expected
effect. It may be useful in this regard to write a method with the signature

static void printPossible(int[][][] P)

to print out the state of array possible. Since this method would be for diagnostic purposes only, the
output format would be entirely up to you. Of the two required methods, updatePossible() is by far
the more complicated one to implement. Only when you are sure both methods are working, should you
set up the above loop.

Your source file for this project will be called Sudoku.java, and should be submitted to the assignment
name pa6. You will also submit a Makefile with this project similar the one you submitted for pa5
which will create an executable jar file called Sudoku. This Makefile should also include targets called
clean and spotless as described in pa5. Your Makefile need not include a submit utility.

