
 1

CMPS 12A
Introduction to Programming
Spring 2010

Programming Assignment 5
Due Sunday May 23, 10:00 pm

This is part one of a two-part programming assignment in which you will write a java program to solve
Sudoku puzzles. If you are unfamiliar with Sudoku, see http://en.wikipedia.org/wiki/Sudoku,
or any of the hundreds of websites devoted to the puzzle. Briefly, Sudoku is a logic puzzle in which one
fills a 99× grid with numbers in such a way that every row, column, and 33× “box” contains each of the
numbers 1 through 9 exactly once. An instance of the puzzle consists of a partially filled 99× grid, and it
is the solver’s task to fill in the remaining cells using logical deduction.

 A Sudoku Puzzle

 5 3 4
 8 3 9 1
6 1 2 8 7

 2 7
 4 1 7 8
7 9

 1 7 4 5 8
 6 3 9 7
2 9 5

 Solution

9 2 7 5 3 6 8 1 4
4 8 3 9 7 1 5 2 6
6 1 5 4 2 8 7 9 3

1 6 8 3 5 9 2 4 7
5 4 2 1 6 7 3 8 9
7 3 9 2 8 4 1 6 5

3 9 1 7 4 2 6 5 8
8 5 4 6 1 3 9 7 2
2 7 6 8 9 5 4 3 1

It has been shown that there are 6,670,903,752,021,072,936,960 distinct solution grids. If one takes into
account symmetries in the puzzle such as rotations, reflections, and permutations, then there are just
5,472,730,538 essentially different ways to fill in a grid. Each filled grid however, gives rise to a large
number of distinct puzzles by removing the contents of different sets of cells. Notice that if there are not
enough filled cells to begin with, then the puzzle solution is not uniquely determined. To be a valid
Sudoku puzzle, there can be only one correct way to fill in the empty cells.

In this assignment you will write a program called SudokuIO.java, which performs input/output
operations and checks to see if the grid is already filled. Your program will read in a 99× grid from a
file whose name is given on the command line, then print a text representation of that grid to stdout. Your
program will also determine if the grid is filled or not, and will print a message with that information to

 2

stdout. Each of the methods you write in this assignment will be re-used in programming assignment 6,
which constitutes part two of the project. There you will write a complete Sudoku solver capable of
solving many (but not all) Sudoku puzzles. (These are the puzzles sometimes categorized as “easy
Sudoku”.)

An input file for SudokuIO.java will consist of a space separated list of 81 numbers giving the nine
rows of the puzzle from left to right, and top to bottom. Extra intervening white space (spaces, tabs, and
newlines) will be ignored by your program. In this file, a blank cell will be represented by the number
zero. Thus an input file for the above puzzle would look like:

Input file:
0 0 0 5 3 0 0 0 4
0 8 3 9 0 1 0 0 0
6 1 0 0 2 8 7 0 0

0 0 0 0 0 0 2 0 7
0 4 0 1 0 7 0 8 0
7 0 9 0 0 0 0 0 0

0 0 1 7 4 0 0 5 8
0 0 0 6 0 3 9 7 0
2 0 0 0 9 5 0 0 0

Notice that extra lines and spaces may be included in order to make the “box” structures more visible, but
this is not part of the file format. A single line of 81 numbers would look the same to your program. You
are not required to check the validity of the input file in any way, and you may therefore assume that your
program will be tested only on files representing valid Sudoku puzzles.

Program output will be formatted in a similar manner, except that blank cells will be represented by
dashes “-” rather than zeros. Extra lines and spaces will be included to reveal the box structure. Thus the
corresponding output (printed to stdout) will be:

Output:
- - - 5 3 - - - 4
- 8 3 9 - 1 - - -
6 1 - - 2 8 7 - -

- - - - - - 2 - 7
- 4 - 1 - 7 - 8 -
7 - 9 - - - - - -

- - 1 7 4 - - 5 8
- - - 6 - 3 9 7 -
2 - - - 9 5 - - -

This puzzle is not filled

Your program will print out one blank line after the last line of the grid, followed by a one-line message
stating whether or not the grid is filled, as above. If the input file contains no zeros, and therefore
represents a filled grid, then the message would of course be “This puzzle is filled”.

 3

Your program will implement the puzzle grid as a 2-dimensional int array. It is recommended (though
not required) that this array be of size 1010× , so if you call the array grid say, you can ignore index
zero, and thus refer the seventh row, fifth column of the puzzle as grid[7][5] rather than grid[6][4].
A small amount of memory is lost in doing this, but it’s probably worth the gain in clarity.

Required Features
You will include a Makefile with this project that creates an executable jar file called SudokuIO. See
lab assignment 5 for instructions on how to do this. Your Makefile will include a phony target called
clean that removes SudokuIO.class, and another target called spotless that removes both
SudokuIO.class and the jar file SudokuIO itself. Your Makefile need not contain a submit utility, as
was required in lab5. Read the Makefiles included with the sequence of “Person” examples on the
webpage as a guide.

If too many or too few command line arguments are given, your program will respond with a usage
message, then quit.

% SudokuIO
Usage: SudokuIO [InputFile]

% SudokuIO xyz abc
Usage: SudokuIO [InputFile]

If the file specified on the command line does not exist or cannot be opened, your program will print the
system message associated with FileNotFoundException, print the same usage message as before, then
quit.

% SudokuIO xyz
xyz (The system cannot find the file specified)
Usage: SudokuIO [InputFile]

All output in the above examples will be printed to stderr. Read the example ReadIntegers.java on
the class website for hints on how to accomplish all this. Your program will define and use static
methods with the following names and signatures:

static void usage()
static void getGrid(int[][] G, Scanner sc)
static void printGrid(int[][] G)
static boolean isFilled(int[][] G)

Method usage() will print a usage message to stderr, as above, then exit the program. Method
getGrid() will extract integers from the Scanner object sc and place them in the int array G, row by
row. A typical call to getGrid() from within main() might look like

getGrid(grid, sc);

This assumes that grid is a 2-dimensional array allocated to be of the proper size, and sc is a Scanner
object pointing to the input file. You may of course give these function arguments any names you wish.
Method printGrid() will print the contents of its array argument to stdout in the format described
above. In particular, zeros will be printed as dashes, and the box structure will be apparent from the

 4

spacing. Method isFilled() will return true if all entries in its array argument are non-zero, and
false otherwise.

Remarks
Again, each of these methods will be used in pa6, along with some other methods that implement a
specific Sudoku strategy. Your source file for this project will be called SudokuIO.java, and should be
submitted, along with your Makefile, to the assignment name pa5.

