
 1

CMPS 12L
Introduction to Programming Lab
Spring 2010

Lab Assignment 2
Due Friday April 16, 10:00 pm

We have three goals in this assignment: to learn about file permissions in Unix, to get a basic introduction
to the Andrew File System and it’s directory access control commands, and to learn how to redirect
program input and output to a file.

Unix File Permissions
Every file in a Unix system has a unique owner, and an associated group. The owner of a file is the user
who created it, and the group is a collection of other users who may have access to the file. Each file also
has a set of permission flags which specify separate read, write, and execute permissions for User (i.e. the
owner), Group, and Other (everyone else with an account on the system.) All of this information is
displayed by the ls command with the –l option. To run some examples, log on to your UCSC IC Unix
account, and use your favorite editor to create a couple of text files in your cs12a directory, which you
created in lab1. The contents of each file is unimportant. We will refer to them here as junk1 and junk2 .
Do ls –l at the command prompt, and you will see something like the following.

-rw-r--r-- 1 ptantalo user 28 Jan 27 10: 28 junk1
-rw-r--r-- 1 ptantalo user 73 Jan 27 10: 29 junk2

Since you probably have other files in your cs12a directory, you will likely see a longer listing. Reading
from left to right along the first line above we have:

-rw-r--r-- : permission flags for this file (explained below)
1 : the number of links (I won’t explain this, so don’t worry about it)
ptantalo : the User (owner) for this file (your userid, when you do it)
user : the Group for this file
28 : the size of the file in bytes
Jan 27 10:28 : the date and time of the most recent modification
junk1 : the name of the file

The permission flags are read from left to right as follows:
position 1: the directory flag: d for a directory, and - for a file
positions 2-4: read, write, execute permissions for User (owner)
positions 5-7: read, write, execute permissions for Group
positions 8-10: read, write, execute permissions for Other

The meanings of the values appearing in positions 2-10 are:
- in any column means that the flag is turned off
r in positions 2, 5, or 8 means the file is readable by User, Group, or Other (respectively)
w in positions 3, 6, or 9 means the file is writeable by User, Group, or Other (respectively)
x in positions 4, 7, or 10 means the file is executable by User, Group, or Other (respectively)

Thus -rw-r--r-- in the above example indicates a file which is readable, writeable, but not executable
by its User; readable, but neither writeable nor executable by its Group; and readable, but neither writable
nor executable by Others on the system.

 2

The owner of a file can change it’s permissions by use of the chmod command. For instance

% chmod go+w junk1

has the effect of adding write permission to Group and Other for the file junk1 . (As always, % represents
the Unix command prompt.) Doing ls –l now gives

-rw-rw-rw- 1 ptantalo user 28 Jan 27 10: 28 junk1
-rw-r--r-- 1 ptantalo user 73 Jan 27 10: 29 junk2

As you can see, the usage of chmod is chmod mode filename . In the above example, the permissions
mode go+w is of the form (who)(operator)(permission), where

who is some combination of:
u : User
g : Group
o : Other
a : All (User, Group, and Other)

operator is one of:
+ : add specified permission
- : delete specified permission

permission is some combination of:
r : read permission
w : write permission
x : execute permission

Do the commands chmod go-w junk1 and chmod a+rx junk2 , then try to predict what permission
changes will take effect. Check your answer by doing ls –l .

Another convenient way to specify the permissions mode for a file is by giving chmod a sequence of 3
octal digits (0-7). Each octal digit is equivalent to 3 binary digits, and thus we are giving chmod a
sequence of 9 binary digits, each bit corresponding to one of positions 2-10 in the string of file permission
flags. For instance, the octal sequence 645 is equivalent to the binary sequence 110 100 101, which is in
turn equivalent to the permission flags -rw-r--r-x . Do chmod 467 junk1 and chmod 721 junk2 , and
try to predict the permission changes which result. As before check your answer by doing ls -l . If you
are unfamiliar with octal to binary conversions, see http://en.wikipedia.org/wiki/Octal .

Read permission on a file simply means that the specified user can view it’s contents (using more or cat
for instance). Write permission means that the specified user can modify the contents of the file (using
editing commands like ed, vi , emacs, pico , or other file manipulation operations.) If you have followed
the above instructions, then files junk1 and junk2 will have permissions -r--rw-rwx and -rwx-w---x
respectively. Thus if you (the file’s owner) try to modify junk1 , or to read junk2 , you will get the error
message: Permission denied .

Execute permission means that the file is a program which can be run by the specified user. To run an
executable file in Unix, one simply types it’s name at the command prompt. Type junk1 then junk2 .
You’ll see that junk1 gives the Permission denied error, while junk2 does not. Instead, you will most

 3

likely see each line of junk2 printed out with the error message not found next to it. When you attempt
to execute junk2 the command interpreter reads each line of the file, then tries to parse it as a Unix
command, which may or may not succeed. Thus when a file has ‘executable’ permission, it does not
mean that the file is able to be executed successfully, but rather that the command interpreter is willing to
try to execute it for the specified user. In fact, all Unix commands are nothing more than the names of
executable files, although most such files contain binary machine language instructions instead of text.

An executable text file that contains Unix commands is often called a Shell Script. (‘Shell’ because that’s
another name for a Unix command interpreter, and ‘Script’ since it is a text file and not binary.) Create a
new file with your favorite text editor called prog1 containing the following lines.

prog1
this is a shell script
pwd
cp prog1 prog2
ls -l
more prog1

After you exit your editor do chmod 700 prog1 to make it executable. Obviously the next thing to do is
just type prog1 to run the script, but before you do, take a moment to study the commands in the file and
predict exactly what it will do. Note that anything on a line after the # symbol is a comment and is
ignored by the shell.

The Andrew File System
The Andrew File System (AFS) is a distributed networked file system developed by Carnegie Mellon
University in the 1980s. The Instructional Computing (IC) Unix servers (unix.ic.ucsc.edu) use AFS to
manage all directories and files associated with the IC-Solaris computing environment, which includes
your UCSC computer account. AFS commands are not standard Unix however, so the material in this
section will not necessarily pertain to other Unix systems on which you may have an account, such as the
Baskin SOE servers, or your personal Linux, Ubuntu, or Mac OS X machines.

AFS provides access control levels that are finer and more flexible than the user/group/other permissions
described above, but they work at the level of directories, not files. In a standard Unix system, the file
permissions described in the preceding section would operate on directories in the very same way that
they do on files. This is not the case under AFS, where directory permissions are controlled by an Access
Control List (ACL). These ACLs take precedence over the Unix permissions assigned to directories via
chmod. In fact, under AFS, chmod any_mode any_directory has no effect on the actual access rights
for that directory (although it would appear to do so, if you look at the output of ls –l .) In AFS, each
directory has seven distinct access rights, each of which may be either on or off.

Name Code Permission to
read r View the contents of the files in a directory
lookup l Lookup filenames and examine the ACL of a directory
insert i Add new files and subdirectories to a directory
delete d Remove files from a directory
write w Modify file contents and change file attributes via chmod
lock k Lock files (not explained here, so don’t worry about it)
administer a Change the ACL of a directory

 4

The main AFS command is fs , which has a number of subcommands. (Type fs help to see a complete
listing of all the subcommands to fs .) Of these, we are primarily interested in two: listacl which prints
out an ACL, and setacl which modifies an ACL. Their usage is:

% fs listacl directory_name
% fs setacl directory_name user_or_group_name r ights

For example, create a new subdirectory in cs12a called junk3 (using mkdir), then examine it’s ACL by
doing fs listacl junk3 . You will see something like

Access list for junk3 is
Normal rights:
 system:authuser rli
 system:anyuser rl
 ptantalo rlidwka

This indicates that the group system:authuser , which consists of all users on unix.ic, has read, lookup,
and insert rights. The group system:anyuser , consisting of all users of AFS worldwide, has read, and
lookup rights. The individual user ptantalo (which will be your userid when you do this) has all rights.
The ACL you get for junk3 may be slightly different, depending on the ACL of it’s parent cs12a .
Generally a newly created directory will inherit the ACL of it’s parent. Now modify the ACL for junk3
by doing fs setacl junk3 system:anyuser none , then list it again using fs listacl junk3 . You
will see something like

Access list for junk3 is
Normal rights:
 system:authuser rli
 ptantalo rlidwka

As you can see, none means to remove all rights. Similarly, all means to add all rights. For instance, if
you type fs setacl junk3 system:operator all , then view the ACL, you should have

Access list for junk3 is
Normal rights:
 system:operator rlidwka
 system:authuser rli
 ptantalo rlidwka

Note that all of the above fs commands could have been done with the shorthand la in place of listacl ,
and sa in place of setacl .

Redirection of Program Input/Output
As mentioned in class, all running java programs are equipped with the three data streams: stdin, stdout,
and stderr. In fact the same is true of all Unix processes. By default, stdin represents the sequence of
characters typed at the keyboard as program input. Likewise stdout and stderr represent program output,
which is ordinarily sent to the screen. The Unix redirect operators <, >, >>, >&, and >>& can be used to
redirect these streams to flow to/from files rather than to their defaults. Their general usage is as follows.

command < file1 Read standard input from file1 . file1 should contain exactly those

characters that would ordinarily be typed at the keyboard.
command > file2 Write standard output to file2 instead of the screen. file2 will be
 created if it does not already exist, and will be overwritten if it does exist.

 5

command >> file3 Append standard output to file3 . file3 will not be created if it does not
already exist, and will be appended to if it does exist.

command >& file4 Write standard error to file4 .
command >>& file5 Append standard error to file5 .

Try this out on some Unix commands, such as:

% pwd > junk4
% ls -l > junk5
% ls -l >> junk5

Try to predict the contents of the new files junk4 and junk5 before viewing them. Run the HelloWorld
and HelloWorld2 programs from lab1,

% java HelloWorld > junk6
% java HelloWorld2 >> junk6

then predict the contents of the new file. Recall that HelloWorld4.java from the class webpage was
interactive, in that it read input from stdin. Prepare a file called junk7 containing one line of text. Do

% java HelloWorld4 < junk7
% java HelloWorld4 < junk7 > junk8

and view the contents of junk8.

What to turn in
All the exercises you’ve done so far have been practice, so you may discard all the files and directories
you’ve created up to now. Perform the following steps exactly as stated, and in the given order so that the
file you end up with is correct.

1. Create a subdirectory called lab2 within your cs12a directory, and cd into it.
2. Create two subdirectories called public and private within lab2 . Set their ACLs as indicated in the

following table. Here foobar stands for your username.

public private
foobar all all
system:anyuser rl none
system:authuser rlid none
system:operator rlidwk none

3. Copy the Java .class file HelloWorld2.class (not the source HelloWorld2.java) to lab2 .
4. Create a text file called prog containing the following shell script.

prog
shell script for lab2
pwd > result
echo >> result
fs la public >> result
echo >> result
fs la private >> result
echo >> result
ls -l >> result
echo >> result

 6

5. Use chmod to give yourself rwx permissions on the file prog .
6. Run the shell script prog . Notice that a new file called result is created.
7. Run the Java program HelloWorld2 , and append its output to the file result . Be sure to append

only, and not overwrite result .
8. Submit the file result with no further changes to the assignment name lab2. Follow the pattern

given in lab1 for the submit command.

