
 1

CMPS 10
Introduction to Computer Science
Lecture Notes

Chapter 1: Introduction

What is Computer Science? Some possible misconceptions are:

• The study of computers
• Programming and programming languages
• Applications software like MS word, Adobe Photoshop, etc.

A widely accepted definition of computer science was given by Norman Gibbs and Allen
Tucker: Computer Science is the study of Algorithms, especially their

(1) Mathematical Properties: Correctness, Efficiency, Complexity (time and space)
(2) Hardware Realizations: Logic Gates, Circuits, Architecture
(3) Software Realizations: Programming and Programming Methodologies
(4) Applications to Other Disciplines: Mathematics, Physics, Engineering, Business

Items (1), (2), and (3) constitute a rough outline of this course. We will not cover item (4),
which is vast. So what is an algorithm? Informal definition: a step-by-step procedure which
solves (all instances of) some specific problem. Some simple examples are: a cake recipe,
instructions for balancing your checkbook, instructions for filling out your tax return

Example Consider the problem of adding two 3-digit numbers

 493 617
+751 +945
1244 1562

More generally we consider the problem of adding two m-digit numbers, where 1≥m .
Input: 1≥m and two m-digit numbers: 01221 aaaaa mm K

−−
 and 01221 bbbbb mm K

−−

Output: Their sum: 01221 cccccc mmm K

−−

1) carry 0←
2) 0←i
3) while mi < do 4-10
4) ++← iii bac carry

5) if 10≥ic do 6-7

6) 10−← ii cc

7) carry 1←
8) else do 9
9) carry 0←
10) 1+← ii
11) ←mc carry

12)print 01221 cccccc mmm K

−−

13)stop

 2

Trace execution of this algorithm on: 3=m , 62 =a , 11 =a , 70 =a , 92 =b , 41 =b , 50 =b .

Note that the above operations can be classified into three types:

(1) Sequential Perform a single task, then move to the next operation in the list.
(2) Conditional (Branching) Select the next operation based value of a logical expression.
(3) Iterative (Loop) Repeat some block of instructions until some condition is met.

Why should we specify an algorithm in this way? Answer: If we can specify an algorithm in
this level of detail to solve some problem, then we can automate the solution to that problem.

The entity (machine, robot, person, or persons) which executes the instructions in an algorithm is
called the Computing Agent.

It may seem as if any problem which has a solution can be solved by some algorithm. In fact it
has been shown that there are well defined problems, which have definite solutions, but for
which no algorithmic means of reaching that solution can exist. (See Chapter 11, and references
to Alan Turing, Kurt Gödel).

There are also problems for which we have algorithmic solutions, but these algorithms are so
inefficient as to be unusable.

Example Brute force chess analysis

Consider an algorithm for playing the game of chess which operates as follows. For each of
White’s possible opening moves it considers every possible response by Black, and for each
response by Black, it considers each of White’s possible replies. The algorithm continues in this
manner constructing the entire tree of possible game histories.

 Initial Position

 .………………………….
 White’s Openings
 …... …… ………………………….. ……
 Black’s Responses
 …………………………
 White’s Replies
 ………………………………………………………………….

This tree is very large, we’ll discuss how large shortly. Each descending path in this tree must
end in a board position which is either a win for White, a win for Black, or a Draw (this follows
from the rules of chess.) Once the tree is fully constructed, the algorithm can play what is
essentially a perfect strategy for chess. If the algorithm is playing the role of White say, it
simply avoids any moves which could lead to either a win for Black or a Draw. We call this
algorithm brute force chess analysis. It would be a considerable challenge to write it down in
pseudo-code (or any other formal language), but it can be done.

 3

In order to appreciate the complexity of brute force chess analysis, let us estimate the size of the
above tree. It is known that on average there are 40 legal moves from any board position, and on
average a game of chess takes about 30 moves (i.e. 30 moves for White and 30 moves for Black,
so 60 plys.) Therefore there are approximately 40 board positions at depth 1 in the tree, 240
positions at depth 2, and in general k40 board positions at depth k. Since the average game has
60 plys, the algorithm must check approximately 9660 1040 ≈ ending positions to determine
whether they are win for White, win for Black, or Draw.

 1

 40

 240

 340

 6040

Suppose the algorithm can evaluate 1 quintillion = 1810 board positions per second (a
ridiculously high number.) The run time of the algorithm would then be

years10seconds10
secondpositions/10

positions 10
Time 7078

18

96

≈==

The present age of the universe is estimated by cosmologists to be about 10 billion 1010= years.
Thus the brute force chess analysis algorithm is utterly impractical.

Observe however that chess playing software is readily available. Obviously the underlying
algorithm used by these programs is not brute force chess analysis. Indeed the problem with
brute force chess analysis is that it seeks to find the perfect strategy. (Such a program would be
no fun to play against anyway.) Instead chess programs use algorithms which are much closer to
the way people play chess, i.e. they use a collection of heuristic principles which work most of
the time, but which may fail in special circumstances.

This and other problems (see the "traveling salesman problem" in homework) serve to illustrate
the limits of algorithmic problem solving. There are also problems which may have an
algorithmic solution, but for which none is known. These tend to be problems which involve
some notion of intelligence. The branch of Computer Science which deals with these problems
is called Machine Learning or Artificial Intelligence.

Formal Definition of Algorithm
An algorithm is a well ordered collection of unambiguous and effectively computable operations
that, when executed, produce a result, and halt in finite time.

Let us examine this definition in more detail. To say that a collection of instructions is well
ordered simply means that it is clearly specified which operation to perform first, and when any
operation is completed, which operation to perform next.

 4

Example An algorithm which is not well ordered.
1) do something
2) do something
3) do something
4) repeat

Since it is not clear which steps to repeat, the above algorithm is not well ordered. Is m-digit
addition well ordered?

An unambiguous operation is one that can be carried out directly by the computing agent with no
outside assistance or further simplification. Such an operation is also called a primitive
operation for the computing agent. Note that what is primitive for one computing agent may not
be primitive for another. Our m-digit addition assumes that adding three single-digit numbers is
a primitive operation. If 1-digit addition is not primitive, how can we specify an algorithm for
it? Suppose our computing agent has access to a table with the answers to all 1-digit addition
problems with three terms, and suppose looking up answers in this table is a primitive operation
for our computing agent. Then line (4) of m-digit addition can be replaced by this lookup
operation. If looking up answers in a table were not primitive we would have to specify yet
more detail.

The level of detail/abstraction necessary to specify an algorithm depends on the capabilities of
the computing agent. Is adding two 10-digit numbers a primitive operation for your pocket
calculator?

An operation is effectively computable if it can be accomplished via some computational process.
Essentially this means that it is doable by some computing agent.

Example ba ←
Observe that there are values of b for which no computing agent can perform this step (assuming
the number assigned is to be a real number) i.e. take b negative.

Example list all prime numbers KK, , 32,1 ppp

No computing agent can finish performing this operation.

We say an algorithm produces a result rather than an answer because sometimes (i.e. for some
inputs) there is no answer. In such a case the result would be an error message.

To say that an algorithm halts in finite time means that only finitely many operations will be
executed.

Example The following is example is called an infinite loop.

1) do something
2) do something
3) go to (1)

This is why we always include the stop instruction in our algorithms. It should always be clear
how and under what circumstances execution of an algorithm halts.

In summary we can say the Computer Science is the study of Algorithmic Problem Solving.

