CMPS 10 Introduction to Computer Science Lecture Notes

Chapter 3: Attributes of Algorithms

- Correctness
- Clarity
- Elegance
- Efficiency

The issue of <u>Correctness</u> is really a mathematical one: an algorithm should produce correct results on *all* possible instances of the problem it purports to solve. To prove correctness then it is not sufficient to trace execution on any finite number of instances. Rigorous proofs of correctness are really outside the scope of this class, and we will be satisfied with intuitive explanations of an algorithm's operation, along with an occasional trace.

Clarity means readability and ease of understanding. One way to acheive this is by choosing good descriptive variable names, and by choosing logical constructs which clarify meaning. For instance, in line 10 of Sequential Search we could have had

	10.) if $i > n$
or	10) if found folgo
instead of the much better	10.) if found = false $10.$
	10.) if not found

Each of these conditional operations are logically equivalent in the context of Sequential Search, but only the last alternative really reads like natural english. The goal should be to write code which is so clear that no comments or explanations are really necessary.

Elegance is realted to clarity, and is sometimes in conflict with it. Elegance means essentially simplicity and brevity, accomplishing the task with as few lines of code as possible. Consider the following algorithm which gets a positive integer *n* from the user, then prints out the sum of all the integers from 1 to *n*.

```
1.) get n
2.) sum \leftarrow 0
3.) i \leftarrow 1
4.) while i \leq n
5.)
         sum \leftarrow sum + i
6.)
         i \leftarrow i + 1
7.) print sum
8.) stop
```

This is a very simple and elegant algorithm for adding up a range of integers, but it's suprising when one first learns there there is a much more elegant and succinct solution to the problem.

1.) get n2.) print n(n+1)/23.) stop

At first glance, it may not be clear that these two algorithms do the same thing. To prove that they do, we must prove the formula

$$1 + 2 + 3 + \dots + (n-2) + (n-1) + n = \frac{n(n+1)}{2}$$

which was discovered by the mathematician C. F. Gauss at an early age. Let S denote the left hand side of the formula. Then

$$S = 1 + 2 + 3 + \dots + (n-2) + (n-1) + n,$$

reversing the order of the terms, we get

$$S = n + (n-1) + (n-2) + \dots + 3 + 2 + 1,$$

then adding the last two equations yields

$$S + S = (n+1) + (n+1) + (n+1) + \dots + (n+1) + (n+1) + (n+1).$$

Since the right hand side has exactly *n* terms, this is equivalent to

$$2S = n(n+1),$$

whence upon dividing both sides by 2, we get

$$S=\frac{n(n+1)}{2},$$

which proves the formula.

Exercise Write an algorithm in pseudo-code which given a positive integer n as input, finds the sum of the first n odd positive integers, then prints out that sum. Do this first (a) by using a while loop, then (b) write a more elegant version by deducing a simple and elegant formula for the sum. Do the same thing for the first n even positive integers.

<u>Efficiency</u> is the term used to describe an algorithm's use of resources. The two resources we are most concerned with are space (i.e. memory), and time. Space efficiency can be judged by the amout of information the algorithm stores in order to do it's job, i.e. how many and what kind of variables are used. Some memory must be used to store the input data itself. If an algorithm uses just a few more variables to process the data, it is considered space efficient. If it uses as much space or more than that need to store the input data, it is considered space inefficient.

The rest of this chapter is concerned with classifying algorithms as to their time efficiency. To do this we must have some way of measuring the run time of an algorithm. One way to determine run time would be to write a program in some computer language to implement the algorithm, run the program on some computer with some input data, and observe the amount of time consumed. There are two serious problems with this approach.

- 1. Are we measuring the speed of the algorithm, or the speed of the of the particular computer, or perhaps the speed of the particular computer language? In fact we are measuring all these things.
- 2. We should expect to get different results for different sets of input data representing different instances of the problem. How should these results be combined to give a meaningful measure of an algorithm's efficiency?

To deal with (1) we seek a measure of run time which is independent of any particular computing machine or computer language. We measure run time not by counting seconds, but by counting the **number of instructions executed**. However, not all instructions should be counted equally.

Example Each of the following instructions are fundamentally different.

if
$$a < b$$

 $a \leftarrow b$
else
print c

To deal with (2) we need a measure of run time that tells us something about all possible inputs. We consider three such measures.

Worst Case is the maximum time taken over all inputs of a given size Best Case is the minimum time taken over all inputs of a given size Average Case is the average time consumed over all inputs of a given size

Recall the Sequential Search algorithm from chapter 2:

<u>Input</u>: $n \ge 1$ (the number of numbers in the list), a_1, \dots, a_n (the list of numbers itself), and target (the number to search for.)

<u>Output</u>: The first index *i* such that target = a_i , or 0 if no such index exists.

Sequential Search

- 1.) Get n, a_1, \dots, a_n , target from the user
- 2.) $i \leftarrow 1$
- 3.) found \leftarrow false
- 4.) while $i \le n$ and not found
- 5.) if $a_i = \text{target}$
- 6.) found \leftarrow true

7.) else 8.) $i \leftarrow i+1$ 9.) if **not** found 10.) $i \leftarrow 0$ 11.) print *i* 12.) stop

To measure the run time of Sequential Search, we will take our unit of work to be the comparison of *target* to a number a_i in the list. Thus we count the number of times line 5 is executed. The other instructions will be considered peripheral tasks and will not be counted. Why should we do this? Notice that steps 7 and 12 don't really do anything. Also steps 1, 2, 3, 9, 10, and 11 are executed just once or (in the case of 10) at most once, hence their contribution to the total cost is negligible. Steps 4, 6, and 8 are executed (approximately) the same number of times as step 5. It might make sense therefore, to count the number of target comparisons, then multiply by 4, or some other factor depending on the relative cost of steps 4, 5, 6, and 8. Ultimately it does not matter what factor we use. *What matters most is not the actual cost of the operations performed, but the way that number scales up with n – the size of the input.* (More on this point later.) Thus we will count the number of target comparisons (step5) performed in best, average, and worst cases, on lists of length *n*.

The best case clearly occurs when the target is the first element in the list, in which case only 1 target comparison is performed. The worst case occurs when either the target is not in the list, or when the target is the last element in the list. In this case *n* comparisons are performed. To analyse the average case, we assume, for the sake of definiteness, that the target is both in the list, and is equally likely to found at any position in the list. Thus the average case breakes into *n* (equally likely) subcases. If target = a_1 , then 1 comparison is performed; if target = a_2 , then 2 comparisons are performed; if target = a_3 , then 3 comparisons are performed; ...; and if target = a_n , then *n* comparisons are performed. Thus the average number of comparisons (under our simplifying assumptions) is, applying Gauss' formula:

$$\frac{1+2+3+\dots+n}{n} = \frac{\left(\frac{n(n+1)}{2}\right)}{n} = \frac{n+1}{2} = \frac{1}{2}n + \frac{1}{2}$$

Summarizing, we find that:

Target ComparisonsBest Case:1Average Case:
$$n$$
Worst Case: $\frac{1}{2}n + \frac{1}{2}$

Exercise Find the average number of comparisons performed by Sequential Search on lists of length *n* when the possibility that *target* is not in the list is allowed. Assume that *target* is equally likely to be in the list as not, and when it is in the list, it is equally likely to be in any position in the list. (Answer: $\frac{3n+1}{4}$).