
 16

CMPS 10

Introduction to Computer Science

Lecture Notes

Chapter 3: Attributes of Algorithms

• Correctness

• Clarity

• Elegance

• Efficiency

The issue of Correctness is really a mathematical one: an algorithm should produce correct

results on all possible instances of the problem it purports to solve. To prove correctness then it

is not sufficient to trace execution on any finite number of instances. Rigorous proofs of

correctness are really outside the scope of this class, and we will be satisfied with intuitive

explanations of an algorithm’s operation, along with an occasional trace.

Clarity means readability and ease of understanding. One way to acheive this is by choosing

good descriptive variable names, and by choosing logical constructs which clarify meaning. For

instance, in line 10 of Sequential Search we could have had

 10.) if ni >

or

 10.) if falsefound =

instead of the much better

 10.) if not found

Each of these conditional operations are logically equivalent in the context of Sequential Search,

but only the last alternative really reads like natural english. The goal should be to write code

which is so clear that no comments or explanations are really necessary.

Elegance is realted to clarity, and is sometimes in conflict with it. Elegance means essentially

simplicity and brevity, accomplishing the task with as few lines of code as possible. Consider

the following algorithm which gets a positive integer n from the user, then prints out the sum of

all the integers from 1 to n.

1.) get n

2.) 0sum ←

3.) 1←i

4.) while ni ≤

5.) i+← sumsum

6.) 1+← ii

7.) print sum

8.) stop

This is a very simple and elegant algorithm for adding up a range of integers, but it’s suprising

when one first learns there there is a much more elegant and succinct solution to the problem.

 17

1.) get n

2.) print 2/)1(+nn

3.) stop

At first glance, it may not be clear that these two algorithms do the same thing. To prove that

they do, we must prove the formula

2

)1(
)1()2(321

+
=+−+−++++

nn
nnnLLL

which was discovered by the mathematician C. F. Gauss at an early age. Let S denote the left

hand side of the formula. Then

nnnS +−+−++++=)1()2(321 LLL ,

reversing the order of the terms, we get

123)2()1(++++−+−+= LLLnnnS ,

then adding the last two equations yields

)1()1()1()1()1()1(++++++++++++=+ nnnnnnSS LLL .

Since the right hand side has exactly n terms, this is equivalent to

)1(2 += nnS ,

whence upon dividing both sides by 2, we get

2

)1(

+
=

nn
S ,

which proves the formula.

Exercise Write an algorithm in pseudo-code which given a positive integer n as input, finds the

sum of the first n odd positive integers, then prints out that sum. Do this first (a) by using a

while loop, then (b) write a more elegant version by deducing a simple and elegant formula for

the sum. Do the same thing for the first n even positive integers.

Efficiency is the term used to describe an algorithm’s use of resources. The two resources we

are most concerned with are space (i.e. memory), and time. Space efficiency can be judged by

the amout of information the algorithm stores in order to do it’s job, i.e. how many and what

kind of variables are used. Some memory must be used to store the input data itself. If an

algorithm uses just a few more variables to process the data, it is considered space efficient. If it

uses as much space or more than that need to store the input data, it is considered space

inefficient.

 18

The rest of this chapter is concerned with classifying algorithms as to their time efficiency. To

do this we must have some way of measuring the run time of an algorithm. One way to

determine run time would be to write a program in some computer language to implement the

algorithm, run the program on some computer with some input data, and observe the amount of

time consumed. There are two serious problems with this approach.

1. Are we measuring the speed of the algorithm, or the speed of the of the particular computer,

or perhaps the speed of the particular computer language? In fact we are measuring all these

things.

2. We should expect to get different results for different sets of input data representing different

instances of the problem. How should these results be combined to give a meaningful

measure of an algorithm's efficiency?

To deal with (1) we seek a measure of run time which is independent of any particular

computing machine or computer language. We measure run time not by counting seconds, but

by counting the number of instructions executed. However, not all instructions should be

counted equally.

Example Each of the following instructions are fundamentally different.

if ba <

 ba←

else

 print c

To deal with (2) we need a measure of run time that tells us something about all possible inputs.

We consider three such measures.

Worst Case is the maximum time taken over all inputs of a given size

Best Case is the minimum time taken over all inputs of a given size

Average Case is the average time consumed over all inputs of a given size

Recall the Sequential Search algorithm from chapter 2:

Input: 1≥n (the number of numbers in the list), naa ,,1 L (the list of numbers itself), and target

(the number to search for.)

Output: The first index i such that ia=target , or 0 if no such index exists.

Sequential Search

1.) Get target, , , , 1 naan K from the user

2.) 1←i

3.) falsefound ←

4.) while ni ≤ and not found

5.) if target=ia

6.) truefound ←

 19

7.) else

8.) 1+← ii

9.) if not found

10.) 0←i

11.) print i

12.) stop

To measure the run time of Sequential Search, we will take our unit of work to be the

comparison of target to a number ia in the list. Thus we count the number of times line 5 is

executed. The other instructions will be considered peripheral tasks and will not be counted.

Why should we do this? Notice that steps 7 and 12 don't really do anything. Also steps 1, 2, 3,

9, 10, and 11 are executed just once or (in the case of 10) at most once, hence their contribution

to the total cost is negligible. Steps 4, 6, and 8 are executed (approximately) the same number of

times as step 5. It might make sense therefore, to count the number of target comparisons, then

multiply by 4, or some other factor depending on the relative cost of steps 4, 5, 6, and 8.

Ultimately it does not matter what factor we use. What matters most is not the actual cost of the

operations performed, but the way that number scales up with n – the size of the input. (More on

this point later.) Thus we will count the number of target comparisons (step5) performed in best,

average, and worst cases, on lists of length n.

The best case clearly occurs when the target is the first element in the list, in which case only 1

target comparison is performed. The worst case occurs when either the target is not in the list, or

when the target is the last element in the list. In this case n comparisons are performed. To

analyse the average case, we assume, for the sake of definiteness, that the target is both in the

list, and is equally likely to found at any position in the list. Thus the average case breakes into n

(equally likely) subcases. If 1target a= , then 1 comparison is performed; if 2target a= , then 2

comparisons are performed; if 3target a= , then 3 comparisons are performed; ... ; and if

na=target , then n comparisons are performed. Thus the average number of comparisons (under

our simplifying assumptions) is, applying Gauss' formula:

2

1

2

1

2

12

)1(

321
+=

+
=

 +

=
++++

n
n

n

nn

n

nL

Summarizing, we find that:

 # Target Comparisons

Best Case: 1

Average Case: n

Worst Case:
2

1

2

1
+n

Exercise Find the average number of comparisons performed by Sequential Search on lists of

length n when the possibility that target is not in the list is allowed. Assume that target is

equally likely to be in the list as not, and when it is in the list, it is equally likely to be in any

position in the list. (Answer:
4

13 +n
).

