
 5

CMPS 10

Introduction to Computer Science

Lecture Notes

Chapter 2: Algorithm Design

How should we present algorithms?

Natural languages like English, Spanish, or French which are rich in interpretation and meaning

are not ideal for this purpose. We need a more precise notation to present algorithms that is not

subject to differing interpretations.

At the other extreme formal programming languages (such as C, C++, Java, Perl, ADA, Python,

etc.) are very inflexible in their syntax, and require much attention to detail. These details may

be irrelevant in the initial design phases of an algorithm.

Instead we use an informal and flexible language called pseudo-code which uses English

language constructs and conventions modeled to look like commands available in most computer

languages.

Detailed & Exact Expressive & Abstract

Computer Languages Pseudo-Code Natural Languages

Pseudo-code is a language in which all necessary operations can be expressed, but which is

independent of any computer language, or of any computer for that matter.

Sequential Operations are of three basic kinds: computation, input, and output. The instruction

for performing a calculation and storing the result is written as

expression variable←

This instruction tells the computing agent to evaluate the expression on the right and assign its

value to the variable on the left. The left arrow ← in this context is called the assignment

operator.

Example carry++← iii bac

Example
a

acbb
x

2

42
−+−

←

Unless otherwise stated, we will assume that the computing agent is at least as capable as any

scientific calculator, so that the above expressions are considered primitive operations.

 6

Input and output operations allow the computing agent to receive data values from, and send

results to the outside world, which we also call the “user”.

 Input

 Computing Outside

 Agent World

 Output

The operations used for input and output are get and print respectively.

get variable

print variable

print expression

Example get x

Example print x

Example print 5+x

Text to be printed will be placed in single quotes.

Example print ‘error: division by zero’

Example print ‘the value of x is: ’ x ‘and the value of y is: ’ y

An algorithm which uses only sequential operations is sometimes called a straight line

algorithm.

Example

1) get a, b, c, d

2) dcba +++←sum

3) 4/sumaverage←

4) print average

What does this algorithm do?

Conditional operations (also called branching operations) are expressed using the if statement

or the if-else statement. The if statement is written as

if condition

 do something

 do something

 ..

 do something

do something

..

 7

In this structure “condition” stands for a logical (or Boolean) expression, i.e. an expression that

can be evaluated as true or false. If condition is true, then the indented lines are executed,

followed by the unindented lines. If on the other hand condition is false, then the indented lines

are skipped, and execution picks up at the next unindented line. The indented commands are

known as the true branch of the conditional. An if statement may also come with an

accompanying else clause.

if condition

 do something

 ..

 do something

else

 do something

 ..

 do something

do something

..

If condition is true, then the first group of indented instructions is executed, and the second group

is skipped, followed by the next unindented instruction. If condition is false, then the first group

is skipped, and the second group of indented instructions is executed, followed by the next

unindented instruction. In this structure the second group of indented instructions is known as

the false branch of the conditional, while the first group is know as the true branch, as before.

Example What does the following algorithm do?

1) get a, b

2) if 0=b

3) print 'Error: division by zero'

4) else

5) ba /quotient ←

6) print quotient

7) stop

Iterative operations (also called loops) will be expressed in pseudo-code through three

commands: while, do-while, and for.

while condition

 do something

 ..

 do something

do something

..

First condition is tested, and if found to be true, the indented lines (called the loop body) is

executed. The condition is tested again, and if found to be true, the loop body is executed again.

This process continues until the condition is found to be false, in which case execution picks up

at the next unindented line. The while loop condition is sometimes called a loop repetition

condition since the loop body repeats only so long as this logical expression is true.

 8

Example What does the following algorithm do?

1) response ← 'yes'

2) while response = 'yes'

3) get a, b

4) if 0=b

5) print 'Error: division by zero'

6) else

7) print ba /

8) print 'Do you wish to continue?'

9) get response

10) stop

The do-while loop structure puts the loop repetition condition after the loop body.

do

 do something

 ..

 do something

while condition

do something

..

First the loop body, which consists of just those lines that are indented, is executed. Then the

condition is tested, and if found to be true, the loop body is repeated. We continue executing the

loop body until condition becomes false, then execution picks up at the next unindented line after

while. The loop repetition condition is called a post test condition in this case since it is tested

after the first execution of the loop body. The condition in the while loop on the other hand is

called a pre test condition, since it is tested before the first execution of the loop body.

Example Notice that the loop body in this example is identical to the one in the preceding

example.

1) do

2) get a, b

3) if 0=b

4) print "Error: division by zero'

5) else

6) print ba /

7) print 'Do you wish to continue?'

8) get response

9) while response = 'yes'

10) stop

We often encounter while loops with the following general structure

1←i Initialize the loop control variable i

while ni ≤ Test the loop repetition condition

 do something with i

 1+← ii Increment the loop control variable

 9

We can do these three steps, initialize loop control variable, test loop repetition condition, and

increment loop control variable, more succinctly with the for loop structure below, which is

equivalent to the preceding while loop.

for 1←i to n

 do something with i

Example Here are two equivalent algorithms, one uses a while loop, and the other uses an

equivalent for loop. A trace of both algorithms would be identical.

1) 1←i

2) while 5≤i

3) print 2i

4) 1+← ii

5) stop

1) for 1←i to 5

2) print 2i

3) stop

It has been proved that one can represent any valid algorithm with the operations so far

described. We now consider some well known algorithms which perform certain basic tasks in

computer science.

Example Consider the problem of looking up a name and corresponding telephone number in a

directory

 Names Numbers

 1N 1T

 2N 2T

 3N 3T

 M M

 M M

NAME iN iT

 M M

 M M

 nN nT

We assume that the names are in no particular order (i.e. not necessarily in alphabetical order) so

that we must look at each name in succession. If we find a name iN which matches our target

NAME, we return the corresponding number iT . If no iN is a match, we print a message to that

effect. We call this algorithm Sequential Search.

Input: 1≥n (the number of names in the list), nNN ,,1 L and nTT ,,1 L (the list of names and

corresponding telephone numbers), and NAME (the target name we are searching for.)

Output: the telephone number iT for which iN=NAME , or if no such name exists, print a

message to the user.

 10

Sequential Search

1.) Get NAME , , , , , , , 11 nn TTNNn KK from the user

2.) 1←i

3.) falsefound←

4.) while ni ≤ and not found

5.) if NAME=iN

6.) truefound←

7.) print iT

8.) else

9.) 1+← ii

10.) if not found

11.) print ‘sorry’ NAME ‘not in directory’

12.) stop

The variable found is called a logical variable or Boolean variable (named after the Logician

George Boole). It stores one of the two logical values true or false. A logical expression is an

expression which evaluates to one of these two values. In order to understand how these

expressions are evaluated, we must first define the logical operators and, or, and not.

A proposition is a statement or assertion which can (at least in principle) be evaluated as being

either true or false. For instance ‘today is Wednesday’ and ‘ 76 < ’ are propositions, while

‘hello’ and ‘ 7<x ’ are not propositions. Let A and B be propositional variables, i.e. variables

which stand for unspecified propositions. We can form the compound propositions ‘A and B’,

‘A or B’, and ‘not A’, using the operators and, or, and not, which are defined as follows.

A B A and B

F F F

F T F

T F F

T T T

In this truth table, ‘T’ stands for true and ‘F’ stands for false. In words, ‘A and B’ is true only in

the case when both operands are true, and is false in every other case.

A B A or B

F F F

F T T

T F T

T T T

Again in words, ‘A or B’ is false only in the case when both operands are false, and is true in

every other case.

A not A

F T

T F

Thus ‘not A’ just reverses the logical value of its operand A. The operators and and not have

the same meanings that any speaker of English would expect. However there is some ambiguity

 11

in the English language concerning the word ‘or’. The above truth table for or defines an

operation which is more properly called inclusive or. It asserts that either A, or B, or possibly

both are true There is another meaning of the word ‘or’ in the English language called exclusive

or, abbreviated exor. This operation is defined by the following truth table.

A B A exor B

F F F

F T T

T F T

T T F

Thus ‘A exor B’ asserts that either A, or B, but not both are true. Unfortunately for speakers of

English, there is no such word as ‘exor’, and both meanings are denoted by the word ‘or’. The

listner is expected to gather the meaning from the context.

Example A man with a gun walks up to you and says ‘your money or your life’. Which ‘or’ do

you hope he is using?

Fortunately in Mathematics and Computer Science there is no ambiguity. Whenever you see the

word ‘or’ used in a Math textbook, it means inclusive or. If we ever mean exclusive or, we

explicitly write ‘exor’ (or perhaps some other symbol).

Now we can see exactly how the logical expressions on lines 4 and 10 or Sequential Search will

be evaluated. There are many other examples of searching problems where the data to be

searched is in no particular order. The algorithmic solution is essentially the same as that of the

phone book example, i.e. step through the data from beginning to end until the target data item is

found. It is conceptually very useful and elegant to consider all these examples as being

different instances of the same problem, all solvable by the same algorithm. Since everything in

Computer Science is ultimately represent able by numbers, we can present this Generalized

Sequential Search algorithm as a search of an unsorted list of numbers for some target number.

Input: 1≥n (the number of numbers in the list), naa ,,1 L (the list of numbers itself), and target

(the number to search for.)

Output: The first index i such that ia=target , or 0 if no such index exists.

Sequential Search

1.) Get target, , , , 1 naan K from the user

2.) 1←i

3.) falsefound←

4.) while ni ≤ and not found

5.) if target=ia

6.) truefound←

7.) else

8.) 1+← ii

9.) if not found

10.) 0←i

11.) print i

12.) stop

 12

Example Trace this algorithm on the input: 2 target,5 ==n , and the list 3, -1, 2, 5, 12.

Exercise Modify this algorithm to find the last (i.e. rightmost) occurrence of the target. How

can we modify it to find the 2
nd
, or 5

th
, or j

th
 occurrence of the target? How can we modify it to

print the number of occurrences of the target?

Another common problem in processing a list of numbers is to find the largest or smallest

number in the list. The following algorithm, called Find Largest, solves this problem.

Input: 1≥n (the number of numbers), and naa ,,1 L (the list of numbers, which we assume to

be distinct).

Output: The largest value in the list, together with the position (i.e. the index i) where it is

located.

Find Largest

1.) 1max a← (max is the largest value seen so far)

2.) 1←j (j is the index of the largest value seen so far)

3.) 2←i (i is the index of the element we are presently looking at)

4.) while ni ≤

5.) if max>ia

6.) ia←max

7.) ij←

8.) 1+← ii

9.) print max, j

10.) stop

Example Trace this algorithm on the list 2, 1, -7, 5, 3, 11, 0.

Exercise What happens if we run Find Largest on a list whose elements are not distinct? Try it

on the list 1, 3, 0, 10, 3, 5, 10. How can it be modified to find all occurrences of the maximum?

How can it be modified to find the minimum?

Exercise Assume that addition of integers is a primitive operation for the computing agent, but

that multiplication of integers is not. Write an algorithm which takes as input two (non-negative)

integers a and b, and prints out their product ba ⋅ . Obviously one cannot write ‘print ba ⋅ ’ since

we are assuming here that multiplication is not primitive. The problem is to define

multiplication algorithmically in terms of repeated addition, as follows.

1.) get a, b

2.) 0product ←

3.) 1←i

4.) while bi ≤

5.) a+← productproduct

6.) 1+← ii

7.) print product

8.) stop

 13

This algorithm could be written a little more succinctly using a for loop.

1.) get a, b

2.) 0product ←

3.) for 1←i to b

4.) a+← productproduct

5.) print product

8.) stop

Exercise Now assume that multiplication is a primitive operation for the computing agent, but

that exponentiation (i.e. raising a number to a power) is not. Write an algorithm which takes as

input two (non-negative) integers a and b, then prints out the value ba . Again it is obvious that

statement ‘print ba ’ is not a valid operation. The problem is to define exponentiation in terms of

repeated multiplication.

A classical problem in Computer Science is Pattern Matching. There are many versions of this

problem dealing with patterns in graphics, sound, pictures, and other types of data. We will

consider a simple form of this problem: finding patterns in text data. More precisely, given n

characters of text

nTTTT KKKKKKKKK 321

and given a pattern of m characters, where nm ≤

mPPPP KK 321

find every occurrence of the pattern within the text, i.e. find each index position in the text at

which the pattern begins.

Example 2 ,18 == mn

text: ‘to be or not to be’

pattern: ‘be’

answer: 4, 17

Example 3 ,10 == mn

text: ‘xxxaaaaaxx’

pattern: ‘aaa’

answer: 4, 5, 6

Notice that if 1=m , i.e. if the pattern has just one character in it, then this problem is not

essentially different from the searching problem. We may expect that our algorithm will show

some similarity to Sequential Search. Our solution will be to simply compare the pattern, one

character at time, to m contiguous text characters at every possible starting location within the

text. We start by comparing 1P to 1T , and if they match compare 2P to 2T , and if they match

compare 3P to 3T , etc. We continue in this manner until reach the end of the pattern and thus

establish that the pattern matches the text at position 1, or until we find two characters which

don’t match, indicating a mismatch at position 1. We then slide the pattern over one position in

 14

the text and compare 1P to 2T , then 2P to 3T , etc. as before until we either establish a match or a

mismatch at position 2 in the text. Every time a match occurs, we print out the index within the

text at which the pattern and text matched.

Example 3 ,7 == mn

 check for match at position

7654321 TTTTTTT 1=i

over slide 321 →PPP

7654321 TTTTTTT 2=i

→ 321 PPP

7654321 TTTTTTT 3=i

→ 321 PPP

7654321 TTTTTTT 4=i

→ 321 PPP

7654321 TTTTTTT 5=i

321 PPP

In this case we see that the possible answers, i.e. the set of possible indices i at which a match

can occur, are 1=i to 5=i , since to slide the pattern over one more time would cause it to fall

off the end of the text. In general the indices i to be tested range from 1=i to 1+−= mni .

Input: Integers n and m satisfying nm ≤≤1 , the text nTTTT KKK 321 to be searched, and the

pattern mPPPP K 321 to search for.

Output: All indices i such that mPPPP K 321 matches 121
−+++ miiii TTTT K .

Pattern Match

1.) 1←i

2.) while 1+−≤ mni

3.) 1←j

4.) truematch ←

5.) while mj ≤ and match

6.) if 1−+
≠ jij TP

7.) false match ←

8.) else

9.) 1+← jj

10.) if match

11.) print ‘match found at position ’ i

12.) 1+← ii

13.) stop

 15

Exercise Trace this algorithm on some simple examples like ‘to be or not to be’ or ‘xxxaaaaaxx’

above. Search for various patterns within these texts.

Exercise How can this algorithm be used to find words rather than patterns? For instance

consider the text ‘hand the band to randy and I’, and search for the pattern ‘and’. The answers

will be positions 2, 11, 18, and 23. However the word ‘and’ appears only once, at position 23.

How can we use this algorithm to find only the word ‘and’ and not all occurrences of the pattern

‘and’ within other words?

