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Some Remarks on Strategy for Shannon’s Switching Game 
 
A spanning tree in a connected graph G is simply a spanning subgraph which is also a tree.  In other 
words it is a subtree of G which includes all vertices of G.  In the context of Shannon’s switching game 
we will say tree to mean a spanning tree in the network.  Necessarily any tree contains exactly one path 
from L to R.  If any edge on that path is removed, the resulting subgraph is called a near-tree. 
 
Examples 
 
 
 
A network G:                            L                                                         R  
 
 
 
 
 
 
Trees in G: 
 
 
 
 
 
 
 
Near-trees in G: 
 
 
 
 
 
 
 
Neither a tree nor a near tree: 
 
 
 
 
 
Note that in General there is more than one way to augment a near-tree to a tree, as shown by the 
dashed lines above.  Every near-tree is a forest consisting of two components, each containing one 
terminal of the network.  The set of edges which when added to a near-tree form a tree, themselves 
form a cutset, i.e. a minimal set of edges separating L from R. 
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We will consider networks in which the edge set can be partitioned into: 
 

(a) Two trees, 
(b) Two near trees 
(c) A tree and a near-tree 

 
Examples  
 
 
 
A network of type (a):              L                                                           R  
 
 
 
 
 
 
A network of type (b):             L                                                            R    
 
 
 
 
 
 
A network of type (c):              L                                                             R      
 
 
 
 
 
Recall that every network can be classified as one of the following types: 
 

(1) Favorable to C, 
(2) Favorable to D, or 
(3) Favorable to the first player 

 
Theorem   
(a)⇒ (1), (b)⇒ (2), and (c)⇒ (3). 
 
Remarks 
It is important to note that the converses to the above assertions are false.  For instance, the following 
network is obviously favorable to D, and yet it cannot be partitioned into two edge-disjoint near-trees.   
 
 
                                                  L                                      R     
 
Let n denote the number of vertices in a network, and m the number of edges.  The treeness theorem 
tells us that  (a) 22 −=⇒ nm , (b) 42 −=⇒ nm , and (c) 32 −=⇒ nm .  Therefore categories (a), (b), 
and (c) are mutually exclusive.  By the same token, types (a), (b), and (c) do not exhaust all possible 
networks, so there are networks to which the theorem does not apply.  However, any network which 
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can be obtained from one of type (a) by adding edges must certainly be favorable to C, since C can just 
play as if the extra edges are not present.  Similarly any network which can be obtained from one of 
type (b) by deleting edges is favorable to D. 
 
Proof: 
Throughout we will interpret C’s move as a contraction rather than a reinforcement, as described in the 
project handout. 
 
(a)⇒ (1) 
Let 1T  and 2T  be two edge-disjoint spanning trees in G.  Assume with no loss of generality that D 

plays first, and that an edge from 1T  is destroyed.  The removal of that edge disconnects 1T  into two 

components.  Since the tree 2T  is still intact, it contains an edge which joins vertices from those two 
components.  If C now responds by contracting such an edge, the resulting network will still be of type 
(a) since 1T  will have been reconnected.  Suppose C continues to respond in the fashion, i.e. 
contracting edges in the tree opposite to the one in which D destroys an edge in such a way as to 
reconnect the disconnected tree.  Then after each round of play the network will still be of type (a).  
But after each round there is one less vertex and two less edges.  After 2−n  rounds there are 2 
vertices and 2222 =−⋅  edges left.  The only such network of type (a) is: 
 
                                                             L                               R 
 
At this point we see that C cannot lose.  No matter which edge D destroys, C contracts the other, 
winning the game.  Thus C has a forced win in the original network. 
 
(b)⇒ (2) 
Suppose G consists of two edge-disjoint near-trees 1H  and 2H .  Assume without loss of generality 

that C plays first and an edge e of 1H  is contracted.  There are two cases to consider.  Either (i) e joins 

two vertices in the same component of 2H , or (ii) e joins vertices in different components of 2H .  In 

case(i) a unique cycle will be formed in 2H .  If D now destroys any edge on that cycle, the resulting 

network will again be of type (b).  This is because 1H  has not been disturbed, and the remaining edges 

of 2H  are again acyclic.  In case(ii) a path from L to R will have been created in 2H .  If D now 

destroys any edge on that path, the network will be of type (b), since again 1H  has not changed and the 

surviving edges of 2H  will form a near-tree.  Continuing in this way we reach, after 3−n  rounds of 
play, a point where there are 3 vertices and 2432 =−⋅  edges.  The only such network of type (b) is: 
 
                                                             L                                  R 
 
which is a winning position for D.  Therefore D had an advantage in the original network.  
 
(c)⇒ (3) 
Now suppose the edges of G partition into a tree T and a near-tree H.  If C moves first by contracting 
an edge of T which joins the two components of H, then the resulting network will be of type (a), and 
therefore favorable to C.  If D moves first by removing an edge from the unique path in T which joins 
L to R, then the resulting network will be of type (b), which favors D.  Therefore the player who moves 
first has a forced win in this network.                                                                                                 ///  
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While the above theorem is obviously of some importance in building a strategy for Shannon’s 
Switching game, it’s full implications are not clear, since there is no guarantee that the network on 
which your program will be required to play will be one of type (a), (b), or (c).   Even if such a 
guarantee were in effect, finding a decomposition of the network into subgraphs of the required kinds 
could consume much computing time, since the search space may be quite large.  One possible 
heuristic might be to spend a limited amount of time locating two disjoint spanning trees (say), and if 
that fails, move on to some other strategy.  In any case the preceding theorem is presented in order to 
stimulate your thinking, not to limit it. 
 
Exercise  Classify the following networks as either (a), (b), or (c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


