CMPE 177 Applied Graph Theory and Algorithms Summer 2009

Final Review Problems

1. Determine whether the following graphs are Hamiltonian. Either give a Hamiltonian cycle or prove that none exists.

(a)

(b)

- 2. Prove that any connected graph on *n* vertices and *m* edges satisfies $m \ge n-1$. (Hint: induction on *m*.)
- 3. Let G be a graph on n vertices, m edges, and k connected components. Prove that if m = n k, then G is acyclic. (Hint: Apply the result of the previous problem to each component of G, and use the treeness theorem.)
- 4. Let G be a connected graph with at least three vertices. Prove that if G has a bridge, then G has a cut vertex.
- 5. Recall a simple graph is called *self-complementary* if it is isomorphic to it's own complement. Let G be a simple graph on n vertices. Prove that if G is self-complementary, then either n = 4t, or n = 4t + 1 for some integer t.
- 6. Let G be a simple connected k-regular graph with n = 2k 1 vertices. Prove that G is Hamiltonian. (Hint: use Dirac's theorem.)

- 7. Let *f* be a flow in a network *N* and let $A(X, \overline{X})$ be a cut in *N*.
 - a. Prove that if f(a) = c(a) for every $a \in A(X, \overline{X})$, and f(a) = 0 for every $a \in A(\overline{X}, X)$, then *f* is a maximum flow and $A(X, \overline{X})$ is a minimum cut.
 - b. Conversely, prove that if f is a maximum flow in N and $A(X, \overline{X})$ is a minimum cut, then f(a) = c(a) for every $a \in A(X, \overline{X})$, and f(a) = 0 for every $a \in A(\overline{X}, X)$.
- 8. Let f_1 and f_2 be flows in a network N and let $A(X, \overline{X})$ be a cut in N.
 - a. Show that if f_1 and f_2 are both maximum flows then we need not have $f_1(a) = f_2(a)$ for every $a \in A(\overline{X}, \overline{X})$ and every $a \in A(\overline{X}, X)$.
 - b. If f_1 and f_2 agree on both $A(X, \overline{X})$ and $A(\overline{X}, X)$, are both f_1 and f_2 maximum flows?
- 9. Draw two non-isomorphic strongly connected digraphs having indegrees {1, 1, 1, 2, 2, 2} and outdegrees {1, 1, 1, 2, 2, 2}. (One word of clarification: the ordering in the preceding sets is irrelevant, i.e. a vertex of indegree 1 may have outdegree 1 or outdegree 2.) Prove that your two digraphs are non-isomorphic.
- 10. Let T be a tournament on n vertices (i.e. a digraph whose underlying graph is K_n). Suppose that all outdegrees in T are equal. Prove that n is odd.