## CMPE 177

## Applied Graph Theory and Algorithms

Summer 2009

## Final Review Problems

1. Determine whether the following graphs are Hamiltonian. Either give a Hamiltonian cycle or prove that none exists.
(a)

(b)

2. Prove that any connected graph on $n$ vertices and $m$ edges satisfies $m \geq n-1$. (Hint: induction on $m$.)
3. Let $G$ be a graph on $n$ vertices, $m$ edges, and $k$ connected components. Prove that if $m=n-k$, then $G$ is acyclic. (Hint: Apply the result of the previous problem to each component of $G$, and use the treeness theorem.)
4. Let $G$ be a connected graph with at least three vertices. Prove that if $G$ has a bridge, then $G$ has a cut vertex.
5. Recall a simple graph is called self-complementary if it is isomorphic to it's own complement. Let $G$ be a simple graph on $n$ vertices. Prove that if $G$ is self-complementary, then either $n=4 t$, or $n=4 t+1$ for some integer $t$.
6. Let $G$ be a simple connected $k$-regular graph with $n=2 k-1$ vertices. Prove that $G$ is Hamiltonian. (Hint: use Dirac's theorem.)
7. Let $f$ be a flow in a network $N$ and let $A(X, \bar{X})$ be a cut in $N$.
a. Prove that if $f(a)=c(a)$ for every $a \in A(X, \bar{X})$, and $f(a)=0$ for every $a \in A(\bar{X}, X)$, then $f$ is a maximum flow and $A(X, \bar{X})$ is a minimum cut.
b. Conversely, prove that if $f$ is a maximum flow in $N$ and $A(X, \bar{X})$ is a minimum cut, then $f(a)=c(a)$ for every $a \in A(X, \bar{X})$, and $f(a)=0$ for every $a \in A(\bar{X}, X)$.
8. Let $f_{1}$ and $f_{2}$ be flows in a network $N$ and let $A(X, \bar{X})$ be a cut in $N$.
a. Show that if $f_{1}$ and $f_{2}$ are both maximum flows then we need not have $f_{1}(a)=f_{2}(a)$ for every $a \in A(X, \bar{X})$ and every $a \in A(\bar{X}, X)$.
b. If $f_{1}$ and $f_{2}$ agree on both $A(X, \bar{X})$ and $A(\bar{X}, X)$, are both $f_{1}$ and $f_{2}$ maximum flows?
9. Draw two non-isomorphic strongly connected digraphs having indegrees $\{1,1,1,2,2,2\}$ and outdegrees $\{1,1,1,2,2,2\}$. (One word of clarification: the ordering in the preceding sets is irrelevant, i.e. a vertex of indegree 1 may have outdegree 1 or outdegree 2.) Prove that your two digraphs are non-isomorphic.
10. Let $T$ be a tournament on $n$ vertices (i.e. a digraph whose underlying graph is $K_{n}$ ). Suppose that all outdegrees in $T$ are equal. Prove that $n$ is odd.
