Characteristics of
High-Quality Routines

Contents

5.1 Valid Reasons to Create a Routine

5.2 Good Routine Names

5.3 Strong Cohesion

5.4 Loose Coupling

5.5 How Long Can a Routine Be?

5.6 Defensive Programming

5.7 How to Use Routine Parameters

5.8 Considerations in the Use of Functions
5.9 Macro Routines

Related Topics

Steps in routine construction: Chapter 4
Characteristics of high-quality modules: Chapter 6
General design techniques: Section 7.5

Software architecture: Section 3.4

CHAPTER 4 DESCRIBED THE STEPS you take to build a rbutine. It focused
on the construction process. This chapter zooms in on the routine itself, on the
characteristics that make the difference between a good routine and a bad one.

If you'd rather read about high-level design issues before wading into the
nitty-gritty details of individual routines, read the high-level design chapter,
Chapter 7, first and come back to this chapter later. Since ‘modules are also
more abstract than individual routines, you might also préfer to read about
high-quality modules in Chapter 6 before reading this chapter.

Before jumping into the details of high-quality routines, it will be useful to
nail down two basic terms. What is a “routine’? A routinge is an individual

i

1 §: Characteristics of High-Quality Routines

GODING HORROR

function or procedure invocable for a single purpose. Examples include a
function in C, a function or a procedure in Pascal or Ada, a subprogram in
Basic, and a subroutine in Fortran. For some uses, macros in C and sections of
code called with GOSUB in Basic can also be thought of as routines. You can
apply many of the techniques for creating a high-quality routine to these
variants.

What is a “high-quality routine™ That’s a harder question. Perhaps the easiest
answer is to show what a high-quality routine is not. Here's an example of a
low-quality routine:

Pascal Example of a Low-Quality Routine

Procedure Hand1éStuff(Var InputRec: CORP DATA, CrntQtr integer,

" EmpRec: EMP_DATA, Var EstimRevenue: Real, YTDRevenue: Real,
ScreenX: integer, ScreenY: {nteger,. Var NewColor: COLOR_TYPE,
Var PrevCoTor: COLOR_TYPE, Var Status STATUS TYPE
ExpenseType: integer); : - .

begin .
for i:="1tp: 109 do
pu

What’s wrong with this routine? Here’s a hint: You should be able to find at
least 10 different problems with it. Once you've come up with your own list,
look at the list below:

e The routine has a bad name. HandleStuff() tells you nothing about what
the routine does.

v

A Low-Quality Routine

¢ The routine isnt documented. (The subject of documentation extends
beyond the boundaries of individual routines and is discussed in Chapter
19, “Self-Documenting Code.™)

¢ The routine has a bad layout. The physical organization of the code on
the page gives few hints about its logical organization. Layout strategies
are used haphazardly, with different styles in different parts of the rou-
tine. Compare the styles where ExpenseType = 2 and ExpenseType = 3.
(Layout is discussed in Chapter 18, “Layout and Style.™)

e The routine’s input variable, InputRec, is changed. If it's an input variable,

its value should not be modified. If the value of the variable is supposed
to be modified, the variable should not be called InputRec.

e The routine reads and writes global variables. It reads from CorpExpense
and writes to Profit. It should communicate with other routines more di-
rectly than by reading and writing global variables.

® The routine doesn't have a single purpose. It initializes some variables,
writes to a database, does some calculations—none of which seem to be
related to each other in any way. A routine should have a single, clearly
defined purpose.

¢ The routine doesn’t defend itself against bad data. If CrntQtr equals 0,
then the expression YTDRevenue » 4.0/ real{ CrntQtr) causes a divide-
by-zero error.

e The routine uses several magic numbers: 100, 4.0, 12, 2, and 3. Magic
numbers are discussed in Section 11.1, “Numbers in General.”

e The routine uses only two fields of the CORP._DATA type of parameter. If
only two fields are used, the specific fields rather than the whole struc-
tured variable should be passed in.

e Some of the routine’s parameters are unused. ScreenX and ScreenY are
not referenced within the routine.

¢ One of the routine’s parameters is mislabeled. PrevColor is labeled as a
Var parameter even though it isn't assigned a value within the routine.

e The routine has too many parameters. The upper limit for an under-
standable number of parameters is about 7. This routine has 11. The
parameters are laid out in such an intimidating way that most people
wouldn't try to examine them closely or even count them.

e The routine’s parameters are poorly ordered and are not documented.
(Parameter ordering is discussed in this chapter. Documentation is dis-
cussed in Chapter 19.)

Aside from the computer itself, the routine is the single greatest invention in
computer science. The routine makes programs easier to read and easier to

;r §: Characteristics of High-Quality Routines

5.1

KEY POINT

J; - - — -

understand than any other feature of any programming language. It's a crime
to abuse this senior statesman of computer science with code like that shown
in the example above.

The routine is also the greatest technique ever invented for saving space “and
improving performance. Imagine how much larger your code would be if you
had to repeat the code for every call to a routine instead of branching to the
routine. Imagine how hard it would be to make performance improvements
in the same code used in a dozen places instead of making them all in one
routine. The routine makes modern programming possible.

“OK,” you say, “I already know that routines are great, and 1 program with
them all the time. This discussion seems kind of remedial, so what do you
want me to do about it?”

I want you to understand that there are many valid reasons to create a routine
and that there are right ways and wrong ways to go about it. As an un-
dergraduate computer-science student, I thought that the main reason 10
create a routine was to avoid duplicate code. The introductory textbook I
used said that routines were good because the avoidance of duplication made
a program easier to develop, debug, document, and maintain. Period. Aside
from syntactic details about how to use parameters and local variables, that
was the tota] extent of the textbook’s explanation of the theory and practice of
routines. It was not a good or complete explanation. The following sections
describe why and how to create routines.

Valid Reasons to Create a Routine

Here's a list of valid reasons to create a routine. The reasons overlap some-
what, and they're not intended to make an orthogonal set.

Reducing complexity. The single most important reason to create a routine is
to reduce 2 program’s complexity. Create a routine to hide information so that
you won't need to think about it. Sure, you’ll need to think about it when you
write the routine. But after it's written, you should be able to forget the details
and use the routine without any knowledge of its internal workings. Other
reasons to create routines—minimizing code size, improving maintainability,
and improving correctness—are also good reasons, but without the abstrac-
tive power of routines, complex programs would be impossible to manage
intellectually.

One indication that a routine needs to be broken out of another routine is deep
nesting of an inner loop or a conditional. Reduce the containing routine's com-
plexity by pulling the nested part out and putting it into its own routine.

5.1 Valid Reasons to Create a Routine

CROSS-REFERENCE
For a discussion of decom-
position, see "Choosing
Components to Modularize”
in Section 7.2.

CROSS-REFERENCE

For a discussion of areas
that are likely to change,
see “Areas likely to change"
in Section 6.2.

CROSS-REFERENCE

For details on improving
performance, see

Chapter 28, “Code-Tuning
Strategies,” and Chapter 29,
“Code-Tuning Techniques.”

CROSS-REFERENCE

For details on information
hiding, see Section 6.2,
“Information Hiding.”

Avoiding duplicate code. Undoubtedly the most popular reason for creating a
routine is to avoid duplicate code. Indeed, creation of similar code in two rou-
tines implies an error in decomposition. Pull the duplicate code from both
routines, put a generic version of the common code into its own routine, and
then let both call the part that was put into the new routine. With code in one
place, you save the space that would have been used by duplicated code.
Modifications will be easier because you'll need to modify the code in only
one location. The code will be more reliable because you'll have to check
only one place to ensure that the code is right. Modifications will be more reli-
able because you'll avoid making successive and slightly different modifica-
[ibns under the mistaken assumption that you've made identical ones.

ijiting effects of changes. Isolate areas that are likely to change so that the
effects of changes are limited to the scope of a single routine or, at most, a few
routines. Design so that areas that are most likely to change are the easiest to
change. Areus likely to change include hardware dependencies, input/output,
c¢mplex data structures, and business rules.

Hiding sequences. It's a good idea to hide the order in which events happen
10 be processed. For example, if the program typically gets data from the user
and then gets auxiliary data from a file, neither the routine that gets the user
data nor the routine that gets the file data should depend on the other rou-
tine's being performed first. If you commonly have two lines of code that read
the top of a stack and decrement a StackTop variable, put them into a Pop-
Stack() routine. Design the system so that either could be performed first, and
then create a routine to hide the information about which happens to be per-
formed first.

Improving performance. You can optimize the code in one place instead of
several places. Having code in one place means that a single optimization
b?nefits all the routines that use that routine, whether they use it directly or
indirectly. Having code in one place makes it practical to recode the routine
with a more efficient algorithm or a faster, more difficult language such as
assembler.

Making central polints of control. It's a good idea to keep control for each task
in one place. Control assumes many forms. Knowledge of the number of en-
teies in a table is one form. Control of hardware devices—disks, tapes, print-
ers, plotters, and so on—is another. Using one routine to read from a file and
one routine to write to it is a form of centralized control. This is especially
useful because if the file needs to be converted to an in-memory data struc-
ture, the changes affect only the access routines. Reading and modifying the
contents of internal data structures with specialized routines is another form
of centralized control.

75

hapter 5: Characteristics of High-Quality Routines

CROSS-REFERENCE
For details on hiding the
implementation of data
structures, see Section
12.3, “Abstract Data
Types (ADTs).”

The idea of centralized control is similar to information hiding, but it has
unique heuristic power that makes it worth adding to your programming
toolbox.

Hiding data structures. You can hide the implementation details of a data
structure so that most of the program doesn't need to worry about the messy
details of manipulating computer-science structures and can deal with the
data in terms of how it’s used in the problem domain. Routines that hide im-
plementation details provide a valuable level of abstraction that reduces a
program’s complexity. They centralize data-structure operations in one place
and reduce the chance of errors in working with the data structure. They
make it easy to change the structure without changing most of the program.

Hiding global data. If you need to use global data, you can hide its implemen-
tation details as just described. Working with global data through access rou-
tines provides several benefits. You can change the structure of the data
without changing your program. You can monitor accesses to the data. The
discipline of using access routines also encourages you to think about
whether the data is really global; it might be more accurate to treat it as data
that's local to several routines in a single module or as part of an abstract data

type.

Hiding pointer operations. Pointer operations tend to be hard to read and er-
ror prone. By isolating them in routines, you can concentrate on the intent of
the operation rather than the mechanics of pointer manipulation. Also, if the
operations are done in only one place, you can be more certain that the code
is correct. If you find a better data structure than pointers, you can change the
program without traumatizing the routines that would have used the pointers.

Promoting code reuse. Code put into modular routines can be reused in
other programs more easily than the same code embedded in one larger rou-
tine. Even if a section of code is called from only one place in the program
and is understandable as part of a larger routine, it makes sense to put it into
its own routine if that piece of code might be used in another program.

Planning for a family of programs. If you expect a program to be modified,
it’s a good idea to isolate the parts that you expect to change by putting them
into their own-routines. You can then modify the routines without affecting
the rest of the program, or you can put in completely new routines instead.
Severa) years ago I managed a team that wrote a series of programs used by
our clients to sell insurance. We had to tailor each program to the specific cli-
ent's insurance rates, quote-report format, and so on. But many parts of the
programs were similar: the routines that input information about potential
customers, that stored information in a customer database, that looked up
rates, that computed total rates for a group, and so on. The team modularized
the program so that each part that varied from client to client was in its own

5.1 Valid Reasons to Create a Routine

module. The initial programming might have taken three months or so, but
when we got a new client, we merely wrote a handful of new modules for the
new client and dropped them into the rest of the code. Two or three days'
work, and voila! Custom software!

Making a section of code readable. Putting a section of code into a well-
named routine is one of the best ways to document its function. Instead of
reading a series of statements like

1f (Node <> NULL)
" while (Node.Next <> KULL) do
Node = Node.Next
LeafName = Node.Name
else
LeafName = ""

you can read a statement like
LeafName = GetLeafName(Node)

The new routine is so short that nearly al] it needs for documentation is a
good name. Using a function call instead of six lines of code makes the rou-

tine that originally contained the code less complex and documents it
automatically.

Improving portability. Use of routines isolates nonportable capabilities, ex-
plicitly identifying and isolating future portability work. Nonportable capa-
bilities include nonstandard language features, hardware dependencies,
operating-system dependencies, and so on.

Isolating complex operations. Complex operations—complicated algo-
rithms, communications protocols, tricky boolean tests, operations on com-
plex data, and so on—are prone to errors. If an error does occur, it will be
gasier to find if it isn't spread through the code but is contained in a routine.
The error won't affect other code because only one routine will have to be
fixed—other code won't be touched. If you find a better, simpler, or more reli-
able algorithm, it will be easier to replace the old algorithm if it has been iso-
lated into a routine. During development, it will be easier to try several
designs and use the one that works best.

]solaﬁng use of nonstandard language functions. Most language implemen-
tations contain handy, nonstandard extensions. Using the extensions is a
double-edged sword because they might not be available in a different envi-
ronment, whether the different environment is different hardware, a different
vendor's implementation of the language, or a new version of the language
from the same vendor. If you use the extensions, build routines of your own
that act as gateways to them. Then you can replace the vendor's nonstandard
routines with custom-written ones if you need to. :

i

raiter 5: Characteristics of High-Quality Routines

78

CROSS-REFERENCE
or examples of putting
complicated tests into
boolean functions, see
“Making Complicated
Expressions Simple”
in Section 17.1.

KEY POINT

Simplifying complicated boolean tests. Understanding complicated boolean
tests in detil is rarely necessary for understanding program flow. Putting
such a test into a function makes the code more readable because (1) the
details of the test are out of the way and (2) a descriptive function name sum-
marizes the purpose of the test. ’

Giving the test a function of its own emphasizes its significance. It encourages
extra effort to make the details of the test readable inside its function. The
result is that both the main flow of the code and the test itself become clearer.

For the sake of modularization? Absolutely not. With so many good reasons
for putting code into a routine, this one is unnecessary. In fact, some jobs are

- performed better in a single large routine. (The best length for a routine is dis-

cussed in Section 5.5, “How Long Can a Routine Be?”)

Operations That Seem Too Simple to Put into Routines

One of the strongest mental blocks to creating effective routines is a reluc-
tance o create a simple routine for a simple purpose. Constructing a whole
routine to contain two or three lines of code might seem like overkill. But ex-
perience shows how helpful a good small routine can be.

Small routines offer several advantages. One is that they improve readability.
I once had the following single line of code in about a dozen places in a
program:

Points = DeviceUnits = (POINTS_PER_INCH / DeviceUnitsPerInch())

This is not thé most complicated line of code you'll ever read. Most people

would eventually figure out that it converts 2 measurement in device unitstoa-

measurement in points. They would see that each of the dozen lines did the
same thing. It could have been clearer, however, so I created a well-named
routine to do the conversion in one place:

DevicelUnitsToPoints(DeviceUnits Integer): Integer:
begin
DeviceUnitsToPoints = Devicelnits *
(POINTS_PER_INCH / DeviceUnitsPerIn¢h())
end

When the routine was substituted for the inline code, the dozen lines of code
all looked more or less like this one:

Points = DeviceUnitsToPoints(DeviceUnits)

which was more readable-—even approaching self-documenting.

5.1 Valid Reasons to Create a Routine

This example hints at another reason to put small operations into functions:
Small operations tend to turn into larger operations. I didn't know it when I
wrote the routine, but under certain conditions and when certain devices
were active, DeviceUnitsPerInch() returned 0. That meant I had to account for
division by zero, which took three more lines of code: .

DeviceUnitsToPoints(DeviceUnits: Integer): Integer;
begin
if (DeviceUnitsPerInch() <> @) then
DeviceUnitsToPoints = DeviceUnits *
. (POINTS_PER_INCH / DeviceUnitsPerlInch())
else
DeviceUnitsToPoints = @
end

If that original line of code had still been in a dozen places, the test would
have been repeated a dozen times, for a total of 36 new lines of code. A simple
routine reduced the 36 new lines to 3.

Summary of Reasons to Create a Routine
Here's 2 summary list of the valid reasons for creating 2 routine:
Reducing complexity

Avoiding duplicate code

Limiting effects of changes

Hiding sequences

Improving performance

Making central points of control

Hiding data structures

Hiding global data

Hiding pointer operations

Promoting code reuse

Planning for a family of programs

Making a section of code readable

Improving portability

Isolating complex operations

Isolating use of nonstandard language functions
Simplifying complicated boolean tests

=

!
*pter 5: Characteristics of High-Quality Routines

s

o

Sd

5.2

i
| CROSS-REFERENCE
details on naming varl-
e%, see Chapter 9, “The
‘Power of Data Names.”

CROSS-REFERENCE
the distinction between

focedures and functions,

see Section 5.8, “Con-
siderations in the Use of
: Functions,” later in this
chapter.

&

KEY POINT

Good Routine Names

A good name for a routine clearly describes everything the routine does. Here
are guidelines for creating effective routine names.

For a procedure name, use a strong verb followed by an object. A procedure
with functional cohesion usually performs an operation on an object. The
name should reflect what the procedure does, and an operation on an object
implies a verb-plus-object name. PrintReport(), CalcMontblyRevenues(),
CheckOrderinfo(), and RepaginateDocument() are samples of good pro-
cedure names.

In object-oriented languages, you don't need to include the name of the object
in the procedure name because the object itself is included in the call. You
invoke routines with statements like Report.Print(), OrderInfo.Check(), and
MonthlyRevenues.Calc(). Names like Report.PrintReport() are redundant.

For a function name, use a description of the return value. A function returns
a value, and the function should be named for the value it returns. For ex-
ample, cos(), NextCustomerld(), PrinterReady(), and CurrentPenColor() are
all good function names that indicate precisely what the functions return.

Avoid meaningless or wishy-washy verbs. Some verbs are elastic, stretched
to cover just about any meaning. Routine names like HandleCalculation(),
PerformServices(), ProcessInput(), and DealWithOutput() don't tell you what
the routines do..At the most, these names tell you that the routines have some-
thing to do with calculations, services, input, and output. The exception
would be when the verb “handle” was used in the specific technical sense of
handling an event.

Sometimes the only problem with a routine is that its name is wishy-washy;
the routine itself might actually be well designed. If HandleOutput() is
replaced with FormatdndPrintOutput(), you have a pretty good idea of what
the routine does.

In other cases, the verb is vagué because the operations performed by the
routine are vague. The routine suffers from a weakness of purpose, and the
weak name is a symptom. If that’s the case, the best solution is to restructure
the routine and any related routines so that they all have stronger purposes
and stronger names that accurately describe them.

Describe everything the routine does. In the routine’s name, describe all the
outputs and side effects. If a routine computes report totals and sets a global
variable that indicates all data #s ready for printing, ComputeReportTotals() is
not an adequate name for the routine. ComputeReportTotalsAndSetPrinting-
ReadyVar() is an adequate name but is too long and silly. If you have routines

5.3 Strong Cohesion

CROSS-REFERENCE
For details on creating
gooad variable names, see
Chapter 9, “The Power of
Data Names."

53

CROSS-REFERENCE

For a discussion of medule
cohesion, see Section 6.1,
“Modularity: Coheslon

and Coupling.”

HARD DATA

with side effects, you'll have many long, silly names. The cure is not 1o use

* less-descriptive routine names; the cure is to program so that you cause things
* 10 happen directly rather than with side effects.

Make names of routines as long as necessary. Research shows that the op-

timum average length for a variable name is 9 to 15 characters. Routines tend

. to be more complicated than variables, and good names for them tend 1o be

longer. Michael Rees of the University of Southampton thinks that an average
of 20 to 35 characters is a good nominal length (Rees 1982). An average length
of 15 to 20 characters is probably more realistic, but clear names that hap-

: pened to be longer would be fine.

* Establish conventions for common operations. In some systems, it's impor-

tant to distinguish among different kinds of operations. A naming convention
is often the easiest and most reliable way of indicating these distinctions. In
development of the OS/2 Presentation Manager, for example, the routine
names had a2 Get prefix for destructive input and a Query prefix for non-

© destructive input. Thus, GetinputChar() returned the current input character

and cleared the input buffer. QuerylnputChar() also returned the current in-
put character, but it left the input buffer intact.

Strong Cohesion

' Cohesion refers to how closely the operations in a routine are related. Some

programmers prefer the concept “strength™ How strongly related are the
operations in a routine? A function like sin() is perfectly cohesive because
the whole routine is dedicated to performing one function. A function like
SinAndTan() has lower cohesion because it tries to do more than one thing.
The goal is to have each routine do one thing well and not do anything else.

The payoff is higher reliability. One study of 450 Fortran routines found that
50 percent of the highly cohesive routines were fault free, whereas only 18
percent of routines with low cohesion were fault free (Card, Church, and

© Agresti 1986). Another study of 450 routines (not the same 450 routines,

regardless of how unusual the coincidence is) found that routines with the
highest coupling-to-strength ratios had 7 times as many errors as those with
the lowest coupling-to-strength ratios and were 20 times as costly to fix (Selby

* and Basili 1991).

Discussions about cohesion typically refer to several levels of cohesion. Un-

. derstanding the concepts is more important than remembering specific terms.
" Use the concepts as aids in thinking about how to make routines as cohesive
as possible.

81

)

i

CROSS-REFERENCE
The idea of cohesion is a

1ant of structured design.
Fdr more information on

B

ructured design, see
tion 7.2, “Structured
Design.”

i
|
I
Il
]
i

apﬁer 5: Characteristics of High-Quality Routines

Acceptable Cohesion

The idea of cohesion was introduced in a paper by Wayne Stevens, Glenford
Myers, and Larry Constantine (1974). Some of the ideas have evolved since
then, and here are the levels of cohesion that are now generally considered to
he acceptable:

Functional cohesion. Functional cohesion is the strongest and best kind of
cohesion, occurring when a routine performs one and only one operation.
Examples of highly cohesive routines include sin(), GetCustomerName(),
EraseFile(), CalcLoanPayment(), and GetlconLocation(). Of course, this eval-
uation of their cohesiveness assumes that the routines do what their names say
they do. If they do anything else, they are less cohesive and poorly named.

Sequential cohesion. Sequential cohesion occurs when a routine contains
operations that must be performed in a specific order, that share data from
step to step, and that don’t make up a complete function when done together.
Suppose that 4 program has five operations: Open File, Read File, Perform
Calculations, Output Results, and Close File. Suppose they are organized into
two routines, DoStep() to do the Open File, Read File, and Perform Calcula-
tions operations, and DoStep2() to do the Output Results and Close File
operations. Both DoStep1() and DoStep2() have sequential cohesion because
breaking up the operations that way doesn’t create independent functions.

If, instead, a routine called GetFileData() did the Open File and Read File
operations, that routine would have functional cohesion. If the operations
work together to perform a single function, they constitute a routine with
functional cohesion. In practice, if you can come up with a strong verb-plus-
object name for a routine, the cohesion is probably functional rather than se-
quential. It’s hard to create a respectable name for 2 routine with sequential
cohesion, so a wishy-washy name like DoStep1() is a hinit to redesign and try
for functional cohesion.

Communicationat cohesion. Communicational cohesion occurs when opera-
tions in a routine make use of the same data and aren't related in any other
way. For example, GetNameAndChangePboneNumber() would have commu-
nicational cohesion if the name and phone number were both in, say, a cus-
tomer record. The routine does two things rather than just one, so it doesn't
have functional cohesion. The name and phone number are both in the cus-
tomer record, and they don't need to be dealt with in any particular order, so
the routine doesn’t have sequential cohesion.

This level of cohesion is still acceptable. On a practical level, a system could
frequently need to get a name and change a phone number at the same time.
A system composed of routines like this would be pretty eccentric but would

6.3 Strong Cohesion

FURTHER READING
For a critical view of tem-
poral cohesion, see Struc-
tured Design (Yourdon and
Constantine 1979) or The
Practical Guide to Struc-
tured Systems Design
(Page-Jones 1988).

CROSS-REFERENCE
Module packaging is dis-
cussed in more detail in
Chapter 6, “Three out of
Four Programmers Sur-
veyed Prefer Modules.”

still be clean enough that it would be maintainable. On an aesthetic level, it
would be far from the ideal routine, which does one thing and does it well.

Temporal cohesion. Temporal cohesion occurs when operations are com-
bined into a routine because they are all done at the same time. Typical ex-
amples would be Startup(), CompleteNewEmployee(), and Shutdown(). Some
programmers consider temporal cohesion to be unacceptable because it's
sometimes associated with bad programming practices such as having a
hbdgepodge of code in a Startup() routine. ’

To avoid this problem, ‘think of temporal routines as organizers of other
events. The Startup() routine, for example, might read a configuration file,
initialize a scratch file, set up 2 memory manager, and show an initial screen.
To make it most effective, have the temporally cohesive routine call other rou-
tines to perform specific activities rather than performing the operations di-
rectly itself. That way, it will be clear that the point of the routine is to
orchestrate activities rather than to do them directly.

Unacceptable Cohesion

The remaining kinds of cohesion are generally unacceptable. They result in
cpde that's poorly organized, hard to debug, and hard to modify. If a routine
has bad cohesion, it's better to put effort.into a good rewrite than into a pin-
point diagnosis of the problem. Knowing what to avoid can be useful, how-
ever, so here are the unacceptable kinds of cohesion:

Procedural cohesion. Procedural cohesion occurs when operations in a rou-
tine are done in a specified order. Unlike in sequential cohesion, the sequen-
tial operations in procedural cohesion don't share the same data. For example,
if your users like reports to be printed in a certain order, you might have a
routine that prints a revenue report, an expense report, a list of employee
p}hone numbers, and invitations to the company picnic. This kind of routine is
difficult to name specifically, and its vague routine name would be a tip-off.

Logical cohesion. Logical cohesion occurs when several operations are
stuffed into the same routine and one of the operations is selected by a con-
trol flag that's passed in. It's called logical cohesion because the control flow
or “logic” of the routine is the only thing that ties the operations together—
they're all in a big if statement or case statement together. It isn’t because the
operations are logically related in any other sense.

One example would be an InputAll() routine that input customer names, em-
ployee time-card information, or inventory data depending on a flag passed to
the routine. Other examples would be ComprteAll(), EditAll(), PrintAll(),
and SaveAll(). The main problem with such routines is that you shouldn't
need to pass in a flag 1o control another routine's processing. Instead of

i

Characteristics of High-Quality Routines

i

having a routine that does one of three distinct operations, depending on a
flag pussed to i, its cleaner to have three routines, each of which does one
distinct operation. If the operations Use some of the same code or share data,
the code should be put into a lower-level routine and the routines should be
packaged into a module.

It's usually all right, however, to create a logically cohesive routine if its code
consists solely of a series of {f or case statements and calls to other routines.
In such a case, if the routine’s only function is to dispatch commands and it
doesn’t do any of the processing itself, that's usually a good design. The tech-
nical term for this kind of routine is “transaction center.” A transaction center
is often used as an event-handler routine in message-based environments
such as the Apple Macintosh and Microsoft Windows.

Coincidental cohesion. Coincidental cohesion occurs when the operations in
a routine have no discernable relationship to each other. Other good names
are “no cohesion” or “chaotic cohesion.” The low-quality Pascal routine at the
beginning of the chapter had coincidental cohesion.

None of these terms are magical or sacred. Learn the ideas rather than the ter-
minology. It's nearly always possible to write routines with functional cohe-
sion, so focus your attention on functional cohesion for maximum benefit.
Examples of Cohesion

Here are examples of the several kinds of cohesion, both good and bad:

Example of functional cohesion. A routine calculates an employee’s age,

given a birth date. The routine does one thing and one thing only, so it has

functional cohesion.

Example of sequential cohesion. A routine calculates an employee’s age and
time to retirement, given a birth date. If the routine calculates the age and
then uses that result to calculate the employee’s time to retirement, it has se-
quential cohesion. If the routine calculates the age and then calculates the
time to retirement in a completely separate computation that happens to use
the same birth-date data, it has only communicational cohesion.

Deciding what kind of weak cohesion the routine has, however, is less impor-
tant than determining how to make it better. How would you make the rou-
tine functionally cohesive? Youd create separate routines to compute an
employee’s age given a birth date, and time to retirement given a birth date.
The time-to-retirement routine could call the age routine. They’d both have
functional cohesion. Other routines could call either routine or both.

Example of communicational cohesion. A routine prints a summary report
and when it’s done, reinitializes the summary data passed in to it. The routine

5.3 Strong Cohesion

has communicational cohesion because the two operations are related only
by the fact that they use the same data.

More irriportam than identifying the routine as one with communicational
cohesion is deciding how to make it functionally cohesive. The summary data
should be reinitialized close to where it's created, which shouldn't be in the
report-printing routine. Split the operations into individual routines. The first
prints the report. The second reinitializes the data, close to the code [l.'lal
creates or modifies the data. Call both routines from the higher-level routine
that originally called the communicationally cohesive routine.

Example of logical cohesion. A routine prints a quarterly expense report, a
monthly expense report, or a daily expense report, depending on the va%ue.of
a control flag that’s passed in. The routine has logical cohesion because 1ts. in-
ternal logic is controlled by the flag that's passed in. The routine certainly
doesn't:do one thing and do it well.

How do you make this routine functionally cohesive? Create three routines:
one that prints a quarterly expense report, one that prints a mor%tl"lly expense
report, and one that prints a daily expense report. Modify the original routine
so that it calls one of the new routines, depending on the value of the control
flag that's passed in. The calling routine, containing no code of its own except
the code that calls the appropriate routine, now has functional cohesion. Each
of the three routines called also has functional cohesion.

Incidentally, the routine that does nothing but call the appropriate printing
routine is another example of a transaction center. It's good to name a transac-
tion center something like DispatchReportPrinting()—something with “Dis-
patch"gor “Control” in the name-—so that it's clear that the transaction center
doesn't do anything on its own and that it's not supposed to.

Another example of logical coheslon. A routine prints an expense report,
enters 2 new employee name, or backs up a database, depending on the value
of a control flag that's passed in. The routine has logical cohesion iny—
although the cohesion in this example seems more like illogical cohesion.

To achieve functional cohesion, break up the separate functions into separate
routines. The operations are so unrelated that the code that calls the r.outine
probaBly needs to be reorganized too. Once you have sepdrate routines to
call, reorganizing the calling code is easier.

Examble of procedural cohesion. A routine gets an employee name, then an
address, and then a phone number. The order of these operations is important
only Because it matches the order in which the user is asked for the data on
the input screen. Another routine gets the rest of the emplo?'ee d.ata. The rou-
tine has procedural cohesion because it puts a set of operations in a specified
order and the operations don't need to be combined for any other reason.

C]

35: Characteristics of High-Quality Routines

|

“T'he more important question of how to achieve functional cohesion is answered
in the usual way. Put the separate operations into their own routines. Make
sure that the calling routine has a single, complete job: GetEmployeeData()
rather than GetFirstPartQfEmployeeData(). You'll probably need to modify
the routines that get the rest of the data too. It's common to modify two or
more original routines before you achieve functional cohesion in any of them.

Example of functional and temporal cohesion. A routine performs all the
processing necessary to complete a transaction—getting a confirmation from
the user, saving a record to a database, clearing data fields, and incrementing
counters. The routine has functional cohesion. It does one job, completing a
transaction, and that's all it does. It would also be accurate to describe the
routine as having temporal cohesion, but if you can classify a routine at more
than one level of cohesion, it's considered to have the strongest level of cohe-
sion at which it can be classified.

This example raises the issue of choosing a name that describes the routine at
the right level of abstraction. You could decide to name the routine Confirm-
EntryAndAdjustData(), which would imply that the routine had only coinci-
dental cohesion. If you named it CompleteTmnsaction(), however, it would be
clear that it had a single purpose and clear that it had functional cohesion.

Example of procedural, temporal, or possibly logical cohesion. A routine
performs the first five steps in 2 complicated mathematical operation and
returns the intermediate results of the five steps to the calling routine. Since it
takes several hours to do the first five steps, the routine stores the intermedi-
ate results in a file in case the system crashes. Then the routine checks the
disk to see whether it has enough space to store the final results of the calcula-
tions and returns the disk status to the calling routine along with the inter-
mediate results. '

This routine probably has procedural cohesion, but you could argue per-
suasively for temporal or even logical cohesion. The real issue isn’t precisely
identifying the routine’s brand of imperfect cohesion. It's improving the rou-
tine’s cohesion.

The original routine is a strange collection of activities that's far from being
functionally cohesive. At a minimum, the calling routine should call not one
but several separate routines to (1) do the first five steps in the calculation,
(2) store the intermediate results in a file, and (3) determine available disk
space. If the calling routine is named, say, ComputeExtravagantNumber(), it
shouldn't be writing the intermediate result to disk, and it absolutely should
not be checking disk space for some later activity. It should just compute the
number. A good reorganization is bound to affect routines at least one or two
levels above it. A’ better design of the job would look like the diagram in

Figure 5-1.

5.4 Loose Coupling

5.4

CROSS-REFERENCE
The Idea of coupling Is a
part of structured design.
For more information on
structured design, see
Section 7.2, “Structured
Design.”

Generate extravagant
numbers file

q

Perform safe Write numbers
calculation to file

Perform
final steps

Figure 5-1. An example of decomposition to achieve functional cobesion.

:Ir‘};e: activities covered by the original routine are shown in shaded boxes
ey sh.oulc'i be. at different levels in the organization, which is why so m‘uch'
reorganization is required to put them into more appropriate routines. It's not

i
unusual to need se eral IullC[lOIlally cohesive routines {o rescue one routine
with poor cohesion.

Loose Coupling

The;'degree of coupling refers to the strength of a connection betwee:

routines. Coupling is a complement to cohesion. Cohesion describ nliwo
strongly the internal contents of a routine are related to each other. Coefl 1_0W
describes h.ow strongly a routine is related to other routines. The. oalpisl rzg
create routines with internal integrity (strong cohesion) and smaﬁ di .
wsxl?le, and flexible relations to other routines (loose coupling) e

Good coupling between routines is loose enough that one routine can easil
be called by other routines. Model railroad cars are coupled by o s'ly
_hool;s that latch when pushed together. Connecting two cars is};: pp_O tng
just push the cars together. Imagine how much more difficult it w?)i}l,d b) O};
you had to screw things together, or connect a set of wires, or if you could on
nect only certain kinds of cars to certain other kinds of c'ars The coupli COn;
model railroad cars works because it's as simple as possiiale In sci'tmg .
make the connections among routines as simple as possible . e

Try Fo create routines that depend little on other routines. Make them d

tachfad, as business associates are, rather than attached, as Siamese twin. .
A fugctif)n like sin() is loosely coupled because everyth,ing itneedsto knf):?‘
passed in to it with one value representing an angle in degrees. A functiolrf

87

=

§: Characteristics of High-Quality Routines

such as nitvars(var 1, var2, var3, ..., varN) is more tightly coupled because
the calling routine virtually knows what is happening inside it. Two routines
that depend on each other's use of the same global data are even more tightly
coupled.

Coupling Criteria

Here are several criteria to use in evaluating coupling between routines:

Size. Size refers to the number of connections between routines. With coup-
ling, small is beautiful because it’s less work to connect other routines to a

5.4 Loose Coupling

routine LookupFirstSupervisor(). Suppose you also have in another routine a
structured variable called EmpRec that includes the hiring date and the hiring
department, among other things, and that the second routine passes the vari-
able to LookupFirstSupervisor().

From the point of view of the other criteria, the two routines would look
pretty loosely coupled. The EmpRec connection between the first and second
routines is a smack on the lips, in public, and there's only one connection.
Now suppose that you need to call the LookupFirstSupervisor() routine from
a third routine that doesn't have an EmpRec but does have a hiring date and a

hiring department. Suddenly LookupFirstSupervisor() looks less friendly, un-

i
RTHER READING o1 . . :
F willing to associate with the new routine.

These criteria are routine with a smaller interface. A routine that takes one parameter is more
tel from Structared 100s€ly coupled to routines that call it than a routine that takes six parameters.
Jedign (Yourdonand A routine that takes an integer parameter is more loosely coupled to the rou-
lm‘jhe 1979)and The tines that call it than one that takes a 10-element array or a structured variable.
fidgl Guide 10 Strue- A routine that uses one global variable is more loosely connected to other rou-

ref Systems Desion e in a program than a routine that uses twelve.
(Rage-Jones 1988).

For the third routine to call LookupFirstSupervisor(), it has to know about the
EmpRec data structure. It could dummy up an EmpRec variable with only two
fields, but that would require internal knowledge of LookupFirstSupervisor(),
namely that those are the only fields it uses. Such a solution would be a
kludge, and an ugly one. The second option would be to modify Lookup-

i

Intimacy. Intimacy refers to the directness of the connection between two
routines. The more intimate the connection, the better. The most intimate
connection between routines is a parameter in a parameter list. The routines
communicate directly. The parameter is like a kiss on the lips between the
routines. A less intimate connection is found between routines that work with
the same piece of global data. They communicate less directly. Global data is
like a love letter between routines—it might go where you want it to, or it
might get lost in the mail. The least intimate connection is found between
routines that work with the same database records or files. They both need
the data but are too shy to acknowledge each other. A shared data file is like
passing a note in class that says “Do you like me? Check Oyes or dno.”

Visibility. Visibility refers to the prominence of the connection between two
routines. Programming is not like being in the CIA; you don't get credit for
being sneaky. It's more like advertising; you get lots of credit for making your
connections as blatant as possible. Passing data in a parameter list is making
an obvious connection and is therefore good. Modifying global data so that
another routine can use it is making a sneaky connection and is therefore
bad. Documenting the global-data connection makes it more obvious and is
slightly better.

Flexibility. Flexibility refers to how easily you can change the connections
between routines. Ideally, you want something more like the snap-in modular
connector on your phone than like bare wire and a soldering gun. Flexibility
is partly a product of the other coupling characteristics, but it’s a little different
too. For example, suppose you have a routine that looks up the first supervisor
an employee ever had, given a hiring date and a hiring department. Name the

FirstSupervisor() so that it would take hiring date and hiring department in-
stead of EmpRec. In either case, the original routine turns out to be a lot less
flexible than it seemed to be at first.

The happy ending to the story is that an unfriendly routine can make friends if
it's iwilling to be flexible—in this case, by changing to take hiring date and
hiring department specifically instead of EmpRec.

In short, the more easily other routines can call a routine, the more loosely
coupled it is, and that's good because it's more flexible and maintainable. In
creating a system structure, break up the program along the lines of minimal
interconnectedness. If a program were a piece of wood, you would try to split
it with the grain. '

Levels of Coupling

The traditional names for the levels of coupling are unintuitive, so the follow-
ing descriptions of the classes of coupling use good, mnemonic names along
with the confusing traditional names. Examples of good and bad coupling fol-
low the coupling descriptions.

Simple-data coupling. Two routines are simple-data—coupled if all the data
passed between them is nonstructured and it's all passed through a parame-
ter list. This is often called “normal coupling” and is the best kind.

Data-structure coupling. Two routines are data-structure—coupled if the data
passed between them is structured and is passed through a parameter list.

89

¢

:hﬁpler 5: Characteristics of High-Quality Routines

CROSS-REFERENCE
Coupling with global data is
distinct from coupling with
midule data. For details on
odule-data coupling, see
“Moduie data mistaken for
bal data” in Section 6.2

nf discussions throughout
Chapter 6.

o

This is sometimes called “stamp coupling” (for reasons that have always been
opaque to me) and is fine if used properly. Its main difference from simple-
data coupling is that structured data is involved.

Control coupling. Two routines are control-coupled if one routine passes
data to the other that tells the second routine what to do. Control coupling is
as undesirable as the logical cohesion it’s associated with. It generally requires
that the calling routine know about the internal workings of the called
routine.

Global-data coupling. Two routines are global-data—coupled if they make use
of the same global data. This is also called “common coupling” or “global
coupling.” If use of the data is read-only, the practice is tolerable. Generally,
however, global-data coupling is undesirable because the connection be-
rween routines is neither intimate nor visible. The connection is so easy to
miss that you could refer to it as information hiding’s evil cousin—"informa-
tion losing.”

Pathological coupling. Two_routines are pathologically coupled if one uses
the code inside another or if one alters the local data used inside another. This
is also called “content coupling.” This kind of coupling is unacceptable be-
cause it fails all the criteria of size, intimacy, visibility, and flexibility. One rou-
tine’s executing another routine’s code makes a large connection between the
two routines. Although it’s a close connection, the connection between the
two routines is not intimate. Altering another routine’s data is more like stab-
bing it in the back. The connection is invisible from the point of view of the
routine being stabbed. And the connection is not flexible; it depends on one
routine’s having detailed knowledge of the internal affairs of another. Most
structured languages have scoping rules that prevent pathological coupling.
It’s still possible in Basic and-assembler, however, so if you're working in ei-
ther of those languages, watch out!

Each of these kinds of coupling is shown in Figure 5-2.

Examplies of Coupling
Here are examples of the kinds of coupling, both good and bad:

Example of simple-data coupling. One routine passes a variable containing
an angle in degrees to a tan() routine.

Another example of simple-data coupling. One routine passes five variables
to another routine, including a name, an address, 2 phone number, a birth
date, and a social security number.

Example of acceptable data-structure coupling. One routine passes an Emp-
Recvariable to another routine, EmpRec is a structured variable that includes a

5.4 Loose Coupling

CROSS-REFERENCE
For details on creating good
routine parameter lists, see
Section 5.7, "How to Use
Routine Parameters.”

N

A B
Routine A calls the Routine B is
other routine with called by the

the data shown. other routine.

Simple-Data Coupling

A simple variable
is used hy the

Good Data-Structure Coupling routine called.

The whole structure
is used by the
routine called.

Good Data-Structure Coupling

Most of the structure
is used by the
Bad Data-Structure Coupling routine called.

ﬁ> Little of the

structure is used by

Tolerapy, foterable the routine called.
G’Ob“"Dzu c,\ohﬂ\‘D“u .
Both routines read Coupling Coupling Both routines read
the global data. the giobal data.
One routine writes - cdous H. - One routine writ:
272! 222 g, P~ nes
the global data, and Giobal-Da2 Globzl.&“; the global data, and
i] theotherreads it. coupling Coupling the other reads it.
One routine use. Pathological Coupling
Ses B's Interna! Data

" [another’s internal data.,
————
Figure 5-2. Some kinds of coupling.

' name, an address, a phone number, a birth date, and a social security number.
- The called routine uses all five fields.

"Example of unacceptable data-structure coupling. One routine passes the
same EmpRec variable to another routine. The called routine uses only the
; birth date and phone number. This is data-structure coupling also, but it's not
- a good use of it. Passing the birth date and phone number as simple variables
. would make the connection more flexible and the real connection of the two
: specific fields more visible.

! Example of questionable data-structure coupling. One routine passes an
OfficeRec variable to another routine. OfficeRec has 27 fields, and the called
routine uses 16 of them. This is data-structure coupling. But is it good data-

. structure coupling? It's a close call. Passing OfficeRec makes it obvious that the

. connection is large; passing 16 individual parameters would just be an awk-
ward way of showing the same thing. If the called routine used only 6 or 7 of
OfficeRec’s fields, it would be a good idea to pass them individually.

9N

ten5: Characteristics of High-Quality Routines

If it made sense to structure QfficeRec’s data more, so that the 16 fields used
hy the called routine were contairfed in a substructure or two, that would be
the cleanest solution.

Example of simple-data or possibly data-structure coupling. A routine passes
an EraseFile() routine a string containing the name of the file to erase. This is
probably simple-data coupling. You might argue that it’s data-structure coup-
ling because a string is a data structure. I say, “You say tom-AY-to, I say tom-
AH-t0.” Both are fine, and the distinction isn't important.

Example of control coupling. One routine passes a flag to another that tells it
whether to print a monthly report, a quarterly report, or an annual report.

Example of unacceptable global-data coupling. A routine modifies an entry
in a table stored as a global variable. The table is indexed by employee ID.
The routine then calls another routine and passes it the employee ID as a pa-
rameter. The called routine uses the employee ID to read the global-data
table. This is a classic example of global-data coupling. (Although merely
passing the employee ID would constitute simple-data coupling, the first rou-
tine’s modification of the table entry earns the coupling the worst rating.)

5.5 How Long Can a Routine Be?

tain functionality—the abstractive power is lost and the value of the routine is
reduced or eliminated. Routines are primarily an intellectual tool for reducing
complexity. If they 're not making your job simpler, they’re not doing their job.

How Long Can a Routine Be?

On their way to America, the Pilgrims argued about the best maximum length
for a routine. After arguing about it for the entire trip, they arrived at Plymouth
Rock and started to draft the Mayflower Compact. They still hadn't settled the
maximum-length question, and since they couldn't disembark until they'd
signed the compact, they gave up and didn't include it. The result has been an
interminable debate ever since about how long a routine can be.

The theoretical best maximum length is often described as one or two pages
of program listing, 66 to 132 lines. In this spirit, in the 1970s IBM limited rou-
tines to 50 lines, and TRW limited them to two pages (McCabe 1976). The evi-
dence in favor of short routines, however, is very thin, and the evidence in
favor of longer routines is compelling. Consider the following:

b‘:‘aj:“i:::i:i’;‘;g . Example of acceptable global-data °°'UP“"9- One routine passes an em- : ® A study by Basili and Perricone found that routine size was inversely cor-
kbl data sately, Seg ployee ID tc.> another routine. Both routines use the emPloyee IQ to read the 2 related with errors; as the size of routines increased (up to 200 lines of
ction 10.6, “Global correspgnldéng e;l};laloyeefnam:l: fron; adglob:;ll tt,aai)l;:. Nelther1 routé’ne changes © code), the number of errors per line of code decreased (1984).
; " ata, This i ten described as global-data coupling, but it's more ; . . .
Variables” a0y globa 1515 O 8 pling s HARDOATA Another study found that routine size was not correlated with errors, even

like simple-data coupling or “tolerable global-data coupling.” Unlike the rou-
tines in the example in which one routine modifies data used by another,
these routines aren’t connected to each other by the global data. With respect
to each other, their read-only use of the same global data is benign. There is a
world of difference between two routines conspiring to hide a connection by

using global data (as in the previous example) and two routines coincidentally

reading a value from the same global table.

Example of pathological coupling. An assembler routine knows the address
of a table declared as a local variable inside another routine. It uses the ad-
dress to modify the table directly. The address is not passed between the rou-
tines as a parameter.

Another example of pathological coupling. A Basic routine uses a GOSUB to
execute a piece of code within another routine.

The whole point of good coupling is that an effective routine provides an ad-
ditional level of abstraction—once you write it, you can take it for granted. It
reduces overall program complexity and allows you to focus on one thing ata
time. If using a routine requires you to focus on more than one thing at
once-—knowledge of its internal workings, modification to global data, uncer-

though structural complexity and amount of data were correlated with
errors (Shen et al. 1985).

® A 1986 study found that small routines (32 lines of code or fewer) were
not correlated with lower cost or fault rate (Card, Church, and Agresti
1986; Card and Glass 1990). The evidence suggested that larger routines
(65 lines of code or more) were cheaper to develop per line of code.

‘® An empirical study of 450 routines found that small routines (those with
fewer than 143 source statements, including comments) had 23 percent
more errors per line of code than larger routines (Selby and Basili 1991).

i® A study of upper-level computer-science students found that students’

comprehension of a program that was super-modularized into routines
about 10 lines long was no better than their comprehension of a program
that had no routines at all (Conte, Dunsmore, and Shen 1986). When the
program was broken into routines of moderate length (about 25 lines),
however, students scored 65 percent better on a test of comprehension.

‘e A recent study found that code needed to be changed least when routines

averaged 100 to 150 lines of code (Lind and Vairavan 1989).

93

i
apLer 5: Characteristics of High-Quality Routines

HARD DATA

KEY POINT

Where does all this leave the question of routine length? Well, if you're 2 man-
ager, don't tell your programmers to keep their routines to one page—the
studies cited and your programmers' experience will tell them you're full of
hooey. Second, if you think it makes sense to make a certain routine 100, 150,
or 200 lines long, it's probably all right to do so. Current evidence says that
routines of such length are no more error prone than shorter routines and are
likely to be cheaper to develop.

If you want to write routines longer than about 200 lines, be careful. (A line is
2 noncomment, nonblank line of source code.) None of the studies that
reported decreased cost, decreased error rates, or both with larger routines
distinguished among sizes larger than 200 lines, and you're bound to run into
an upper limit of understandability as you pass 200 lines of code. In a study of
the code for IBM's OS/360 operating system and other systems, the most error-
prone routines were those that were larger than 500 lines of code. Beyond 500
lines, the error rate tended to be proportional to the size of the routine (Jones
1986a). Moreover, an empirical study of a 148,000-line program found that
routines with fewer than 143 source statements were 2.4 times less expensive
to fix than larger routines (Selby and Basili 1991).

v

Defensive Programming

Defensive programming doesn't mean being defensive about your program-
ming—*“Tt does so work!” The idea is based on defensive driving. In defen-
sive driving, you adopt the mind-set that you're never sure what the other
drivers are going to do. That way, you make sure that if they do something
dangerous you won't be hurt. You take responsibility for protecting yourself
even when it might be the other driver’s fauli. In defensive programming, the
main idea is that if a routine is passed bad data, it won't be hurt, even if the
bad data is another routine’s fault. More generally, it's the recognition that
programs will have problems and modifications, and that a smart program-
mer will develop code accordingly.

Defensive programming is useful as an adjunct to the other techniques for
quality improvement described in this book. The best form of defensive cod-
ing is not installing errors in the first place. Using iterative design, writing PDL
before code, and having low-level design inspections are all activities that
help to prevent installing defects. They should thus be given a higher priority
than defensive programming. Fortunately, you can use defensive program-
ming in combination with the other techniques.

5.6 Detensive Programming

Part of the Interstate-90 floating bridge in Seattle sank during a storm because the

i flotation tanks were left uncovered, they filled 1ith water, and the bridge became too
heauvy to float. During construction, protecting yourself against the small stuff mat-
ters more than you might think.

Using Assertions

An assertion is a function or macro that complains loudly if an assumption
isn't true. Use assertions to document assumptions made in the code and to
flush out unexpected conditions. An assertion function usually takes two ar-
guments: a boolean expression that describes the assumption that's supposed
o be true and a message to print if it's not. Here's what a Pascal assertion
would look like if the variable Denominator were expected 10 be nonzero:

Pascal Example of an Assertion

Assert(Denominator <> @, 'Denominator is unexpectedly equal to @.');

This assertion asserts that Denominator is not equal to 0. The first argument,
Denominator <> 0, is a boolean expression that evaluates 1o True or Faise.
The second argument is a message to print if the first argument is False—that
is, if the assertion is false.

Even if you don't want your users to see assertion messages in production
code, assertions are handy during development and maintenance. During

95

ptér 5: Characteristics of High-Quality Routines

W

alt() statement
erfninates the pro-
am. It isn't part of
‘afdard Fascal, but
most implementa-
iohs of Fascal have

|
;bFlOSS-HEFERENCE
u ¢ould view this as one
ny problems associ-
ediwith putting:multiple
terhents on one line. For
rejexamples, see “Using
Ogly One Statement per
Line” in Section 18.5.

something similar. —

development, assertions flush out contradictory assumptions, unexpected
conditions, bad values passed to routines, and so on. During maintenance,
they indicate whether modifications have damaged other parts of the code.

Assertion procedures are easy to write. Here's one in Pascal:

Once you've written a procedure like this, you can call it with statements like
the first one above.

Here are some guidelines for using assertions:

Use a preprocessor macro for assertions, if you have a preprocessor. Using
a preprocessor for assertions makes it easy to use assertions during develop-
ment and to take them out of production code.

Avoid putting executable code in assertions. Putting code in an assertion
taises the possibility that the compiler will eliminate the code when you turn
off the assertions. Suppose you have an assertion like this:

R o] 227 T mmn T
7

The problem with this code is that if you don't compile the assertions, you
don’t compile the code that performs the file open. Put executable statements
on their own lines, assign the results to status variables, and test the status
variables instead. Here’s an example of a safe use of an assertion:

5.6 Defensive Programming

CROSS-REFERENCE
If you program using
pointers, it's an especlally

good idea to check any that
are passed as input param-

eters. For details on the
kinds of checks you can
make on pointers, see
Section 11.9, “Pointers.”

This statement calls
a routine, Assert(),
that prints the mes-
sage and stops the
program If the logical

expression isn't true. —

Garbage In Does Not Mean Garbage Out

A good program never puts out garbage, regardless of what it takes in. A good
program uses “garbage in, nothing out”; “garbage in, error message out”; or
“no garbage allowed in" instead. By today's standards, “garbage in, garbage
out” is the mark of a sloppy program.

Check the values of all data input from external sources. When getting data
from a file or a user, check to be sure that the data falls in the allowable range.
Make sure that numeric values are within tolerances and that strings are short
enough to handle. Comment assumptions about acceptable input ranges in
the code.

Check the values of all routine input parameters. Checking the values of rou-
tine input parameters is essentially the same as checking data that comes
from anexternal source, except that the data comes from another routine in-

‘stead of from a file or a user.

Here’s an example of a routine that checks its input parameters:

: C Example of Using an Assertion to Check an Input Parameter

float tan
(
float Oppositelength,
float Adjacentlength
)
{ i R
1A comput‘e“tangent‘r of an angle */

Assert(AQJacentLength =9, "AdjatféhtLength detected tofbe 8.");

return(Oppositeléngth / Adjicentlength):
o i s .

mﬁ":;f g -&‘

Decide how to handle bad parameters. Once you've detected an invalid pa-
rameter, what do you do with it? Depending on the situation, you might want
to return an error code, return a neutral value, substitute the next piece of
valid data and continue as planned, return the same answer as the previous
time, use the closest legal value, call an error-processing routine, log a warn-
ing message 1o a file, print an error message, or shut down. You have so many
options that you need to be careful not to handle invalid parameters in ran-
domly different ways in different parts of the program. Deciding on a general
approach to bad parameters is an architectural decision and should be ad-
dressed at the architectural level.

97

:lq? 5: Characteristics of High-Quality Routines

ROSS-REFERENCE
For more details on
hdndling unanticipated
ies; see “Tips for Using
case Statements” in

Section 14.2.

&HOSS—HEFERENCE
ir details on information
hiding, see Section 6.2,
information Hiding.”
|

CROSS-REFERENCE
For details on version
control, see Section
22.2, "Conflguration

Management.”

Exception Handling

Use exception handling to draw attention to unexpected cases. Exceptional
cases should be handled in a way that makes them obvious during develop-
ment and recoverable when production code is running. For example, sup-
pose you have a case statement that interprets five kinds of events, and you
expect to have only five kinds of events. During development, the default
case should be used to generate a warning that says “Hey! There’s another
case here! Fix the program!” During production, however, the default case
should do something more graceful, like writing a message to an error-log file.
Try to design the program so that you can flip from development mode to
production mode without too much trouble.

Anticipating Changes

Change is a fact of life with every program. New versions of old programs re-
quire more changes to the existing code base than new code does. But even
during development of the first version of a program, you'll add unanticipated
features that require changes. Error corrections also introduce changes. De-
velop the program so that likely changes can be accommodated without an
act of Congress. The more likely the change, the less trauma it should cause
the program. Hiding the areas in which you anticipate changes is one of the
most powerful techniques for minimizing the impact of changes.

Planning to Remove Debugging Aids

Debugging aids are assertions, memory checksums, print statements, and a
variety of other coding practices that can help in debugging. If you're writing
code for your own use, it might be fine to leave all the debugging code in the
program. If you're writing code for commercial use, the performance penalty
in size and speed is often prohibitive. If that’s the case, plan to avoid shuffling
debugging code in and out of a program. Here are several ways to do that.

Use version control. Version-control tools can build different versions of a
program from the same source files. In development mode, you can set the
version-control tool to include all the debug code. In production mode, you
can set it to exclude any debug code you don't want in the commercial version.

Use a built-in preprocessor. If your programming environment has a pre-
processor—as C does, for example—you can include or exclude debug code
at the flick of a compiler switch. You can use the preprocessor directly or by
writing a macro that works with preprocessor definitions. Here's an example
of writing code using the preprocessor directly:

5.6 Detensive Programming

DEBUG. To exclude
the debugging code,

don’t define DEBUG.

This code is included
or excluded depending

on whether DEBUG
has been defined.

‘C Example of Using the Preprocessor Directly to Controt Debug Code

To include the debug- — #define DEBUG
ging code, use #define ..,
to define the symbol

#if defined{ DEBUG)
I+ debugging code «/

“fendif

This theme has several variations. Rather than just defining DEBUG. you can
assign it a value and then test for the value rather than testing whether it's de-
fined. That way you can differentiate between different levels of debug code.
You might have some debug code that you want in your program all the time,
s0 you surround that by a statement like #if DEBUG > 0. Other debug code
might be for specific purposes only, 50 you can surround it by a statement like
#if DEBUG == POINTER_ERROR. In other places, you might want to set
debug levels, so you could have statements like =if DEBUG > LEVEL_A.

If you don't like having #zf defined()s spread throughout your code, you can
write a preprocessor macro to accomplish the same task. Here's an example:

C Example of Using a Preprocessor Macro to Control Debug Code
fdefine DEBUG

. #if defined(DEBUG)
#define DebugCode(code_fragment) { code_fragment }
i felse
#define DebugGode(code_fragment)
. fendif
DebugCode
(

stafement 1:
statement 2;

statement n;
)i

As in the first example of using the preprocessor, this technique can be
altered in a variety of ways that make it more sophisticated than completely
including atl debug code or completely excluding all of it.

ipfar 5: Characteristics of High-Quality Routines
i

Ié

I
IECHOSS-REFEHENOE Write your own preprocessor. ifa language doesn’t include a preprocessor,
F"j:“m Information on s fairly easy to write one for including and excluding debug code. Establish
‘;’ E:z::o??:f:::gzco): a convention for designating debug code and write your precompiler to follow
Wi ‘ting one of your awn, that convention. For example, in Pascal you could write a precompiler to re-
2 “Macro preprocessors” spond 1o the keywords (#BEGIN DEBUG] and (#*END DEBUG/. Write a script
- inSection 203. or batch file to call the preprocessor, and then compile the processed code.
You'll save time in the long run, and you won't mistakenly compile the un-

preprocessed code.

cross-ReFeReNce Use debugging stubs. In many instances, you can call a routine to do debug-
ffuuqéﬁ'ss":a;';z; 5‘:2 ging checks. During development, the routine might perform several opera-
bt ;n di\ﬁ ual o utinges" tions before control returns to the caller. For production code, you can replace
T nSection 255, the complicated routine with a stub routine that merely returns control imme-
| diately to the caller or performs only a couple of quick operations before
! returning control. This approach incurs only a small performance penalty,
| and i’s a quicker solution than writing your own preprocessor. Keep both the
. development and production versions of the routines so that you can switch
back and forth during future development and production.

| You might start with a routine designed to check pointers that are passed o it:

routine to check
the pointer.
: During development, the CheckPointer() routine would perform full check-
ing on the pointer. It would be slow but effective. Tt could look like this:
| v
i le.of a Routine for:Checkin
this routine checks — Procegure CheckPainter(Pointer: POINTE

any pointer that's begin E .)
sed to it. It can be f heck 1--maybe chéck that
sied during develop- jerform check 2--mdybe check that itsidogtag.is
ment to perform {-perform check 3--maybe check that what- it points't
s many checks as ’ ' o B
you can bear.

5.8

(continued)

1

6.6 Defensive Programming

{ perform check n--... }
end;

. When the code is ready for production, you might not want all the overhead
associated with this pointer checking. You could swap out the routine above
. and swap in this routine:

Pascal Example of a Routine for Checking Pointers During Production
This routine just — Procedure CheckPointer(Pointer: POINTER_TYPE);

returns immediately begin
tothe caller. -~ { no code; just return to caller }
© end;

This is not an exhaustive survey of all the ways you can plan to remove
debugging aids, but it should be enough to give you an idea for some things
that will work in vour environment.

Introducing Debugging Aids Early

The earlier you introduce debugging aids, the more they'll help. Typically,
you won't go to the effort of writing a debugging aid until after you've been
bitten by a problem several times. If you write the aid after the first time, how-
ever, or use one from a previous project, it will help throughout the project.

Firewalling to Contain the Damage Caused by Errors

Firewalling is a damage-containment strategy. A firewall in a building keeps a
 fire from spreading, isolating it in one place. The reason is similar to that for

having isolated compartments in the hull of a ship. If the ship runs into an
iceberg and pops open the hull, that compartment is shut off and the rest of
the ship isn't affected.

Information hiding helps to firewall a program. The less you know about the
internal workings of another routine, the fewer assumptions you make about
how the routine operates. The fewer the assumptions you make, the less the
chance that one of them is wrong. i

Loose coupling also helps to firewall a program. The looser the connection be-
tween two routines, the less the chance that an error in one routine will affect
the other. If the connection is tighter, if one routine borrows code from inside
another, chances are high that an error in one routine will affect the other.

101

|pﬁr §: Characteristics of Hich-Quality Routines

A final way to firewall is to designate certain interfaces as houndaries to “safe”
areas. Check data crossing the boundaries of a safe area for validity and re-
spond sensibly if the data isn’t valid. Another way of thinking of this approach
is as an operating-room technique. Data is sterilized before it's allowed to en-
ter the operating room. Anything that’s in the operating room is assumed to
be safe. The key design decision is deciding what to put in the operating
room, what to keep out, and where to put the doors—which routines are con-
sidered to be inside the safety zone, which are outside, and which sanitize the
data. The easiest way to do this is usually by sanitizing external data as it ar-
rives, but darta often needs to be sanitized at more than one level, so multiple
levels of sterilization are sometimes required.

® Routines That Assume Routines That Check I
Data Is safe: Their Data:
printBeginPage(} PointsToDeviceUnits(} - I
PrintEndpPage() DeviceUnitsToPoints()
PrintBeginboc() SetfontSize()
printEndDoc() SetUnderlinePosition()
SetFontName() SetsStrikeoutPasition()
SetCursorHeight() SetitalicAngle()
SetCursorPosition{)
ShowCursor()
TimestampOutput(}

Distinguish between routines that assume their data is safe and routines that check
the data they receive.

Checking Function Return Values

If you call a function and have the option of ignoring a function’s return value
(for example, in C, where you don’t even have to acknowledge that a function
returns a value), don’t! Test the value. If you don't expect it ever to produce an
error, check it anyway. The whole point of defensive programming is guard-
ing against unexpected errors.

This guideline holds true for system functions as well as your own. Unless
you've set an architectural guideline of not checking system calls for errors,
check for error codes after each call. If you detect an error, include the error
number and the description of the error from perror() in C or the equivalent
in other languages.

5.6 Defensive Programming

-Determining How Much Defensive
Programming to Leave in Production Code

*One of the paradoxes of defensive programming is that during development,
you'd like an error to be noticeable—you'd rather have it be obnoxious than
risk overlooking it. But during production, you'd rather have the error be as
unobtrusive as possible, to have the program recover or fail gracefully. Here

rare some guidelines for deciding which defensive programming tools to leave
in your production code and which to leave out:

:Leave in code that checks for important errors. Decide which areas of the
program can afford to have undetected errors and which areas cannot. For ex-
ample, if you were writing a spreadsheet program, you could afford to have
undetected errors in the screen-update area of the program because the main
penalty for an error is only a messy screen. You could not afford to have un-
detected errors in the calculation engine because the errors might result in
;subtly incorrect results in someone's spreadsheet. Most users would rather
-suffer 2 messy screen than incorrect tax calculations and an audit by the IRS.

Remove code that checks for trivial errors. If an error has truly trivial conse-

.quences, remove code that checks for it. In the previous example, you might
.remove the code that checks the spreadsheet screen update. “Remove”
doesn't mean physically remove the code. It means use version control, pre-
compiler switches, or some other technique to compile the program without
‘that particular code. If space isn't a problem, you could leave in the error-
checking code but have it log messages to an error-log file unobtrusively.

Remove code that results in hard crashes. During development, when your
program detects an error, you'd like the error to be as noticeable as possible
so that you can fix it. Often, the best way to accomplish such a goal is to have
‘the program print a debugging message and crash when it detects an error.
“This is useful even for minor errors.

‘During production, your users need a chance to save their work before the
program crashes and are probably willing to tolerate a few anomalies in ex-
change for keeping the program going long enough for them to do that. Users
:don't appreciate anything that results in the loss of their work, regardless of
‘how much it helps debugging and ultimately improves the quality of the pro-
'gram. If your program contains debugging code that could cause a loss of
‘data, take it out of the production version.

‘Leave in code that helps the program crash gracefully. The opposite is also
true. If your program contains debugging code that detects potentially fatal
‘errors, users appreciate having a chance to save their work before the error
tbecomes terminal. The word processor I'm using has a “SAVE" light that

103

i
i

apler 5: Characteristics of High-Quality Routines

Too much of any-
thing is bad, but too
. much whiskey is
just enough.

Mark Twain

HARD DATA

comes on right before the program runs out of memory. I've learned not to
keep working when the light comes on but to save immediately and exit.
When 1 restart the program, everything is fine. Theoretically, the program
shouldn’t run out of memory, and it shouldn't have more memory available
when I restart it with the same document and the same machine. The fact that
it runs out of memory is a defect. But the programmers were thoughtful
enough to leave the debugging aid in the program, and I appreciate having
the warning rather than losing my work.

See that the messages you leave in are friendly. If you leave internal error
messages in the program, verify that they’re in language that’s friendly to the
user. In one of my early programs, I got a call from a user who reported that
she'd gotten a message that read “You've got a bad pointer allocation, Dog
Breath!” Fortunately for me, she had a sense of humor. A common and effec-
tive approach is to notify the user of an “internal error” and list a phone num-
ber the user can call to report it.

Being Defensive About Defensive Programming

Too much defensive programming creates problems of its own. If you check
data passed as parameters in every conceivable way in every conceivable
place, your program will be fat and slow. What's worse, the additional code
needed for defensive programming adds complexity to the software. Code in-
stalled for defensive programming is not immune to defects, and you're just as
likely to find a defect in defensive-programming code as in any other code—
more likely, if you write the code casually. Think about where you need to be
defensive, and set your defensive-programming priorities accordingly.

How to Use Routine Parameters

Interfaces between routines are some of the most error-prone areas of a pro-
gram. One study by Basili and Perricone (1984) found that 39 percent of all
errors were internal interface errors-—errors in communication between rou-
tines. Here are a few guidelines for minimizing interface problems:

Make sure actual parameters match formal parameters. Formal parameters,
also known as dummy paraméters, are the variables declared in a routine
definition. Actual parameters are the variables or constants used in the actual
routine calls.

A common mistake is to put the wrong type of variable in a routine call—for
example, using an integer when a floating point is needed. (This is a problem

5.7 How to Use Routine Parameters

CROSS-REFERENCE
For details on documenting
routine parameters, see
“Commenting Routines”

in Section 19.5. For details
on formatting parameters,
see Section 18.7, “Laying
Out Routines.”

only in weakly typed languages like C when you're not using full compiler
warnings and in assembler. Strongly typed languages such as Pascal don't

‘have this problem.) When arguments are input only, this is seldom a problem;
‘usually the compiler converts the actual type to the formal type before pass-

ing it to the routine. If it is a problem, usually your compiler gives you a warn-
ing. But in some cases, particularly when the argument is used for both input
and output, you can get stung by passing the wrong type of argument.

1Develop the habit of checking types of arguments in parameter lists and
heeding compiler warnings about mismatched parameter types. In C, use

ANSI function prototypes for all your functions so that the compiler will
check all function arguments automatically and warn you of mismatches.

‘Put parameters in input-modify-output order. Instead of ordering parameters
.randomly or alphabetically, list the parameters that are input-only first, input-

and-output second, and output-only third. This ordering implies the sequence

of operations happening within the routine—inpuuting data, changing it, and
‘sending back a result. Here are examples of parameter lists in Ada:

Ada Example of quame_ters;ﬂln_!l_nput-uodlfy-Outpt; Order

procedure InvertMatrix =
(
OriginalMatrix: 1n MATRIX;
ResultMatrix: "~ -out” MATRIX
): e R

procedure Cli; eStringCa
(N !

PageNumber
Status: :
)

This ordering convention conflicts with the C-language convention of putting

- the modified parameter first. The input-modify-output convention makes
_ more sense to me, but if you consistently order parameters in some way, you

still do the readers of your code a service.

If several routines use similar parameters, put the similar parameters in a
consistent order. The order of routine parameters can be a mnemonic, and

105

{

agter 5: Characteristics of High-Quality Routines

-

5l

REIEESR)

HARD DATA

inconsistent order can make parameters hard to remember. For example, in C,
the fbrintf) function is the same as the priny{) function except that it adds a
file as the first argument. A similar function, fpuss(), is the same as puts() ex-
cept that it adds a file as the last argument. This is an aggravating, pointless
difference that makes the parameters of these functions harder to remember
than they need to be.

On the other hand, the function strrncpy() in C takes the arguments target
string, source string, and maximum number of bytes, in that order, and the
function memcpy() takes the same arguments in the same order. The similar-
ity between the two functions helps in remembering the parameters in either
function.

In Microsoft Windows programming, most of the Windows routines take a
“handle” as their first parameter. The convention is easy to remember and
makes each routine’s argument list easier to remember.

Use all the parameters. If you pass a parameter to a routine, use it. If you
aren’t using it, remove the parameter from the routine interface. Unused pa-
rameters are correlated with an increased error rate. In one study, 46 percent
of routines with no unused variables had no errors. Only 17 to 29 percent of
routines with more than one unreferenced variable had no errors (Card,
Church, and Agresti 1986).

This rule to remove unused parameters has two exceptions. First, if you're
using function pointers in C or procedure variables in Pascal, you'll have sev-
eral routines with identical parameter lists. Some of the routines might not use
all the parameters. That's OK. Second, if you're compiling part of your pro-
gram conditionally, you might compile out parts of a routine that use a certain
parameter. Be nervous about this practice, but if yow're convinced it works,
that's OK too. In general, if you have a good reason not to use a parameter, go
ahead and leave it in place. If you don't have a good reason, make the effortto
clean up the code.

Put Status or Error variables last. By convention, status variables and vari-
ables that indicate an error has occurred go last in the parameter list. They are
incidental to the main purpose of the routine, and they are output-only pa-
rameters, so it’s a sensible convention.

Don't use routine parameters as working variables. It’s dangerous to use the
‘parameters passed to a routine as working variables. Use local variables in-
stead, For example, in the Pascal fragment below, the variable ImputVal is im-
properly used to store intermediate results of 2 computation.

5.7 How to Use Routine Parameters

At this point, lnp.Val —

no longer containg the
value that was irput.

'~ Pascal Example of Improper Use of Input Parameters

procedure Sample
(

InputVal: Integer:
VAR OQutputVal: Integer
Y
begin
InputVal := InputVal « CurrentMultiplier(InputV¥al };

InputVal := InputVal + CurrentAdder(Inputval):

Outputval := Input¥al

~ end;

DInputval in this code fragment is misleading because by the time execution

;reaches the last line, /npurtal no longer contains the input value; it contains a
.computed value based in part on the input value, and it is therefore mis-

named. If you later need 1o modify the routine to use the original input value

/in some other place, you'll probably use /nputVal and assume that it contains
.the original input value when it actually doesn't.

How do you solve the problem? Can you solve it by renaming InputVal?
Probably not. You could name it something like WorkingVal, but that’s an in-

;complete solution because the name fails to indicate that the variable’s origi-
.nal value comes from outside the routine. You could name it something

ridiculous like InputValThatBecomesdWorkingVal, or give up completely and
name it X or Val, but all these approaches are weak.

A better approach is to avoid current and future problems by using working

 variables explicitly. The following code fragment demonstrates the technique:

InputVal: . Integer; .
VAR OutputVai: Integer)
I o

var .
WorkingVal: Integer;
begin - T
WorkingVal :=-+InputVal; R

HorkfggVal += Workingval ¢ CurrentMultiplier(Hork1nguv_a"|
WorkingVal := WorkingVal + CurrentAdder(WorkingVal);

~

If you need to use the —

original value of Irput-
Yal here or somewhere
else, it's still available.

Qutput¥al := WorkingVal
end; - o

107

|ptir 5: Characteristics of High-Quality Routines

=

5 v
<

n,

)|

|

CROSS-REFERENCE
details on considera-
tions in using global

les, see Section 10.6,
“Global Variables.”

CROSS-REFERENCE
details on documenta-
'see Chapter 19, “Self-
- Documenting Code.”

;
i
i

HARD DATA

Introducing the new variable WorkingVal clarifies the role of Inputval and
eliminates the chance of erroneously using InputVal at the wrong time. In
Ada, this practice can be enforced by the compiler. If you designate a parame-
ter as i, you're not allowed to modify its value within a function. Don't take
this reasoning as a justification for literally naming a variable WorkingVal In
general, WorkingVal is a terrible name for a variable, and the name is used in
this example only to make the variable's role clear.

In Fortran, using working variables is a particularly good practice. When a
variable in the parameter list of the calling routine is modified in the called
routine, it's also modified in the calling routine. In any language, assigning the
input value to a working variable emphasizes where the value comes from. It
eliminates the possibility that a variable from the parameter list will be modi-
fied accidentally.

The same technique should be used to preserve the value of a global variable.
If you need to compute a new value for a global variable, assign the global
variable the final value at the end of the computation rather than using it to
hold the result of intermediate calculations.

Document interface assumptions about parameters. If you assume the data
being passed to your routine has certain characteristics, document the as-
sumptions as you make them. It's not a waste of effort to document your
assumptions both in the routine itself and in the place where the routine is
called. Don't wait until you've written the routine to go back and write the
comments—you won't remember all your assumptions. Even better than
commenting your assumptions, use assertions to put them into code.

What kinds of interface assumptions about parameters should you document?

Whether parameters are input-only, modified, or output-only

Units of numeric parameters (inches, feet, meters, and so on)

Meanings of status codes and error values if enumerated types aren't used
Ranges of expected values

Specific values that should never appear

Limit the number of a routine’s parameters to about seven. Seven is a magic
number for people’s comprehension. Psychological research has found that
people generally cannot keep track of more than about seven chunks of infor-
mation at once (Miller 1956). This discovery has been applied to an enormous
number of disciplines, and it seems safe to conjecture that most people can't
keep track of more than about seven routine parameters at once.

5.7 How to Use Routine Parameters

CROSS-REFERENCE
For details on module
data, see "Module data
mistaken for globat data”
in Section 6.2.

CROSS-REFERENCE

For details on abstract data
types, see Section 12.3,

“ “Abstract Data Types
(ADTs)."

In practice, how much you can limit the number of parameters depends on
hqw your language handles complex data structures. If you program in a
modern language that supports structured data, you can pass a composite
data structure containing 13 fields and think of it as one mental “chunk” of

data. If you program in a more primitive language, you might need to pass all
13 fields individually.

If:you find yourself consistently passing more than a few arguments, the coup-
ling among your routines is too tight. Design the routine or group of routines
to reduce the coupling. If you are passing the same data to many different rou-
tines, group the routines into a module and treat the frequently used data as
module data.

Consider an input, modify, and output naming convention for parameters. If
you find that it's important to distinguish among input, modify, and output pa-
rameters, establish a naming convention that identifies them. You could prefix
them with i_, m_, and o_. If you're feeling verbose, you could prefix them
with INPUT, MODIFY, and OUTPUT.

Pass only the parts of structured variables that the routine needs. As dis-
cussed earlier, in Section 5.4 on coupling, it's better to pass only the specific
fields of a structure that the called routine uses unless it uses almost all of
them. The whole routine is easier to use somewhere else if you've specified a
precise interface. A precise interface decreases inter-routine coupling and
makes the routine more flexible.

The precise-interface rule has an exception when you're working with ab-
stract data types (ADTs). The data rype might require that you keep track of a
structured variable, but it's good practice with an abstract data type that you
not look inside the structure. If that's the case, design the abstract-data-type
routines so that they take the whole record as a parameter. This allows you to
treat the record as an object outside the ADT routines and keeps the record at
the same level of abstraction as the ADT routines. If you open the structure by
working with individual fields, you lose the level of abstraction that the ADT
grovides.

Don't assume anything about the parameter-passing mechanism. Some
hard-core nanosecond scrapers worry about the overhead associated with
passing parameters and bypass the high-level language’s parameter-passing
mechanism. This is dangerous and makes code nonportable. Parameters are
commonly passed on a system stack, but that's hardly the only parameter-
passing mechanism that languages use. Even with stack-based mechanisms,
the parameters themselves can be passed in different orders and each pa-
rameter’s bytes can be ordered differently. If you fiddle with parameters di-
rectly, you virtually guarantee that your program won't run on a different
machine.

109

;I
Chapter 5: Characteristics of High-Quality Routines

il

5.8 Considerations in the Use of Functions

Modern languages such as C, Pascal, and Ada support both functions and pro-
cedures. A function is a routine that returns a value; a procedure is a routine
that does not.

| When to Use a Function and When to Use a Procedure

Purists argue that a function should return only one value, just as a mathe-
i matical function does. This means that a function would take only input pa-
: rameters and return its only value through the function itself. The function
‘ would always be named for the value it returned, as sin(), CustomerID(), and
ScreenHeight() are. A procedure, on the other hand, could take input, modify,
and output parameters—as many of each as it wanted to.

A common programming practice is to have a function that operates as a pro-
cedure and returns a status value. Logically, it works as a procedure, but be-
cause it returns a value, it's officially a function. For example, you might have
a procedure called FormatOutput() used in statements like this one:

if (FormatOutput(Inpuf. Formatting, Output) = Success) then ...

1 In this example, FormatOuiput() operates as a procedure in that it has an out-
‘ put parameter, Output, but it is technically a function because the routine it-
self returns a value. Is this a valid way to use a function? In defense of this
approach, you could maintain that the function return value has nothing to do
with the main purpose of the routine, formatting output, or with the routine
! name, FormatOutput(); in that sense it operates more as a procedure does
even if it is technically a function. The use of the return value to indicate the
success or failure of the procedure is not confusing if the technique is used
consistently.

The alternative is to create a procedure that has a status variable as an explicit
parameter, which promotes code like this fragment:

FormatOutput(Input, Formatting, OQutput, Status)
if (Status = Success) then ...

I prefer the second style of coding, not because I'm hard-nosed about the dif-
ference between functions and procedures but because it makes a clear
separation between the routine call and the test of the status value. To com-
i bine the call and the test into one line of code increases the density of the
statement and correspondingly its complexity. The following use of a function
is fine too:

Status = FormatOutput(Iﬁput, Formatting, Output)
if (Status = Success) then ...

5.9 Macro Routines

5.9

CROSS-REFERENCE

Even if your language
doesn't have a macro pre-
processor, you can build
your own. For details, see
Section 20.5, “Building Your
Own Programming Tools,”

A-Unique Risk with Functions

Using a function creates the risk that the function will return its value im-
properly. This usually happens when the function has several possible paths
and one of the paths avoids setting a return value. When creating a function
mentally execute each path to be sure that the function returns a value unde;
all possible circumstances.

Macro Routines

Routines created with preprocessor macros call for a few unique considera-
tions. The following rules and examples pertain to using the preprocessor in

C. If you're using a different language or preprocessor, adapit the rules to your
situation.

Enclose macro expressions In parentheses. Because macros and their argu-
ments are expanded into code, be careful that they expand the way you want
them to. One common problem lies in creating a macro like this one:

c Example of a Macro That Doesn't Exparid Properly
#define product(a, b) aeb

This macro has a problem. If you pass it nonatomic values for or b, it won't
do the multiplication properly. If you use the expression product(x+1, y+2),
it expands to x+1 «y+2, which, because of the precedence of the multiplica-
tion and addition operators, is not what you want. A better but stiil not perfect
version of the macro looks like this:

s

This is close, but still no cigar. If you use product() in an expression that has
operators with higher precedence than multiplication, the (a)+(%) will be torn
apart. To prevent that, enclose the whole expression in parentheses:

© CExample’of a Macro That Works
 #define product(.a. b) ((2)s(b))

111

hdpter 5: Characteristics of High-Quality Routines
i

Surround multiple-statement macros with curly braces. A nuicro can have
multiple statements, which is 2 problem if you treat it as if it were u single
statement. Here's an example of a macro that's headed for trouble:

C Example of a Macro with Multiple Statements That Doesn’t Work

fidefine LookupEntry(Key, Index) \
Index = (Key - 18) / 5: \
Index = min{ Index, MAX_INDEX); \
Index = max{ Index, MIN_INDEX):

for (EntryCount = @: EntryCount < NumEntries; EntryCount+)
LookupEntry(EntryCount, Tablelndex[EntryCount 1);

This macro is headed for trouble because it doesn't work as a regular function
would. As it's shown, the only part of the macro that's executed in the for loop
is the first line of the macro:

Index = (Key - 18) / 5;

To avoid this problem, surround the macro with curly braces, as shown here:

€ Example of a Macro with Mﬂlt!ﬁlé Statem‘e'ﬁ;'t; Thég_Works _
efine Lop upEntry(Key; : . ‘

Name macros that expand to code like routines so that they can be replaced
by routines if necessary. The C-language convention for naming macros is to
use all capital letters. If the macro can be replaced by a routine, however,
name it using the naming convention for routines instead. That way you can
replace macros with routines and vice versa without changing anything but
the routine involved.)

’

Following this recommendation entails some risk. If you commonly use ++
and —— as side effects (as part of other statements), you'll get burned when
you use macros that you think are routines. That might cause you to avoid this
recommendation. But considering the other problems with side effects, you'll
do better to follow this recommendation and avoid side effects instead.

High-Quality Routines Checklist

CROSS-REFERENCE

This is a checklist of con-
siderations about the quality
of the routine. For a list of
the steps used to build a
routine, see the checklist
“Constructing a Routine” in
Chapter 4, page 70.

0 O 00 O OO

0O 0O 00000

High-Quality Routines

‘BIG-PICTURE ISSUES
‘0 Ts the reason for creating the routine sufficient?

Have all parts of the routine that would benefit from being put into
routines of their own been put into routines of their own?

Is the routine’s name a strong, clear verb-plus-object name for a proce-
dure or a description of the return value for a function?

Does the routine’s name describe everything the routine does?

Does the routine have strong, functional cohesion—doing one and only
one thing and doing it well?

Do the routines have loose coupling—is one routine’s connection to
other routines small, intimate, visible, and flexible?

Is the length of the routine determined naturally by its function and
logic, rather than by an artificial coding standard?

DEFENSIVE-PROGRAMMING ISSUES

Are assertions used to document assumptions?

Does the routine protect itself from bad input data?
Does the rourtine handle exceptions gracefully?

Is the routine designed to handle changes gracefully?

Have debugging aids been installed in such a way that they can be
activated or deactivated without a great deal of fuss?

Have information hiding, loose coupling, and data checks been used to
firewall errors so that they won't affect code outside the routine?

Does the routine check function return values?

Is the defensive code that’s left in the production code designed to help
the user rather than the programmer?

PARAMETER-PASSING ISSUES

[Do the formal and actual parameters match?

(3 Are the routine’s parameters in a sensible order, including matching the
order of parameters in similar routines?

1 Are interface assumptions documented?
(continued)

113

Chapter 5: Characteristics of High-Quality Routines

114

High-Quality Routines checklist, continud
Does the routine have seven or fewer parameters?

Are only the parts of a structured variable that are necded, rather than
the whole variable, passed to the routine?

[s each input parameter used?

Is each output parameter used?

o000 00

If the routine is a function, does it return a value under al} possible
circumstances?

Key Points

® The most important reason to create a routine is to improve the intellec-
tual manageability of a program, and you can create a routine for many
other good reasons. Saving space is a minor reason; improved correct-
ness, reliability, and modifiability are better reasons. :

® The point of strong cohesion and loose coupling is that theyi provide for

higher levels of abstraction—you can take the operation of cohesive,
loosely coupled routine for granted, which allows you to focus completely
on other tasks.

¢ Sometimes the operation that most benefits from being put into a routine

of its own is a simple one.

¢ The name of a routine is an indication of its quality. If the name is bad

and it’s accurate, the routine might be poorly designed. If the name is bad
and it’s inaccurate, it's not telling you what the program does. Either way,
a bad name means that the program needs to be changed.

¢ Defensive-programming techniques make errors easier to find, easier to

fix, and less damaging to production code.

