
UNIVERSITY OF CALIFORNIA, SANTA CRUZ
BOARD OF STUDIES IN COMPUTER ENGINEERING

CMPE118/218/L: INTRODUCTION TO MECHATRONICS

LABORATORY ASSIGNMENT NUMBER 3 FOR CMPE 118/218

Due by 5:00pm on Wednesday, February 2, 2011
Pre-Lab Due by 5:00pm on Thursday, January 27, 2011

This lab is intended to acquaint you with: Purpose:

Controlling a DC motor.
Controlling a stepper motor.
Controlling an R/C servo.
Finding information in data sheets.
Pulse width modulation.
Phenomena encountered with a DC motor.
Limitations of techniques implemented purely in software.

1 each: DC motor, R/C servo, and stepper motor (provided at each lab station), 1N4744A 15 Volt
zener diode, 50K potentiometer. CMPE-118 I/O Board, CMPE-118 Dual H-Bridge, DS3568 High
Current Drive, and CMPE-118 Stepper Motor Driver. Ribbon cable connectors and stake headers
for the I/O board. See a TA/tutor for any parts you need that are not in your parts kit.

Minimum Parts
Required:

Pre-Lab:

Complete the following exercises AFTER you have read through the lab assignment and BEFORE
coming in to complete the lab.

 0.1) Decide which port and bit(s) you will use to control the motors (all parts of lab).

 0.2) Decide what, if any, initialization is required for that port.

 0.3) Describe the mode in which the A/D converter will be operating.

 0.4) Determine which pins on which cables/connectors you need to hook up.

 0.5) Determine which ribbon connectors you will need, and how to wire them in.

 0.6) Draw a fully detailed state diagram for a PWM software driver. Include an example plot of
the expected output signal for a given frequency and duty cycle. HINT: using timer events
may assist you getting the proper duty cycles for a given frequency.

Include a description of which of the port lines on the 9S12C32 you used to implement the control
as well as a justification for why you chose to use that (those) particular line(s). Include the answer
to question 0.3.

In the report:

Part 1 Interfacing to a DC Motor and Potentiometer

CKO Ch. 8. ADS12 and PWMS12 reference documentation, the CMPE118 HC12 IO Board
documentation, the CMPE118 DS3658 Module board documentation, the Metrowerks
CodeWarrior Quickstart manual.

Reading:

CMPE 118 Lab Number 3 Due by 5:00 PM on February 2, 2011 2

You are to design the software necessary for the 9S12C32 to drive the supplied DC motor. Motor
drive should use Pulse Width Modulation using the provided PWMS12 software module. The
speed at which you run the motor should be determined by the setting of an external
potentiometer, which your software should read using the A/D converter on the 9S12C32. Your
program should continuously read the voltage set by the potentiometer and set the motor speed
directly proportional to the voltage (full scale A/D is full speed). You should be able to exit the
program by pressing any key. When you have completed this task, you will be prepared to
continue with the laboratory exercises in Part 2. At this point find a tutor or TA and demonstrate
Part 1. BE CAREFUL HERE: Do NOT hook power and ground up with the power supply turned on. It
is the easiest way to fry microcontrollers, followed by reversing power and ground.

Assignment:

Set-Up: 1.1) For this, and the next, part you will be using the CMPE118 DS3658 Module board to drive
the DC motor. Since the DS3658 has open collector outputs, you will need to supply the
power to the motor separately. To bring the power to your proto-board for connection to
the motor, use your banana plug jumpers to bring the power from the positive adjustable
outputs to your proto-board.

 1.2) Use the +12V voltage source from the power supply for the positive output. Now connect
the supply (at the proto-board) to one lead of the DC motor using the connector from the
motor assembly. Also, you will need to supply power to the CMPE118 DS3658 Module
board, so connect the +12V supply to J4, pin 1 on the DS3658 module, and connect J4, pin 2
to the GND terminal on the power supply.

 1.3) Now connect the DS3658’s clamp diode for Channels A & B to the motor supply at the
proto-board, and the output for Channel A to the remaining lead of the DC motor. The
motor should not be rotating at this point, right? If the motor is rotating, this is due to the
fact that you haven’t hooked up anything to the input of the DS3658, so the state of the
input is not guaranteed – it’s floating!

 1.4) Hook up the 9S12C32 output(s) you selected in the pre-lab to the input of the channel you
are using on the DS3658 (use ribbon cable connectors between the IO board and the
protoboard).

 1.5) Hook the two outer leads from the 50K potentiometer to the power supply’s +5V & GND
terminals. Be very careful NOT to use the power going to the motor, since that is +12V and
will destroy the 9S12C32 once you connect it. After doing this, check to see that the voltage
at the wiper (the remaining terminal on the potentiometer) swings between 0 and +5V. You
will also use this circuit in Part 5. Check the voltage levels BEFORE you hook up the IO board.

 1.6) Using one of the jumpers that goes from a wire to a push-on connector, make the
connection from the wiper to the pin labeled AN0 on the HC12 IO Board (it's on J12). Make
sure you go through the follower board and not directly to the pin. What are the limitations
that this imposes? What does it do for the microcontroller? Why might you not want to do
this?

 1.7) It's finally time to try out your code. In CW12, build your project into an executable file.
Then, with the uBug12 window active, turn on (or reset) the 9S12C32 board and type “CON
1” <ENTER>. You should get the connection message. If not, ensure SW1 is in the boot
position. At this point you are ready to download your code. Downloading and testing your
code should proceed exactly as it did in Lab 0. Before you can download your code, you
need to clear the FLASH, so you must type “fbulk” and press <ENTER>. Now, everything is
ready for the new code to be downloaded. You need to tell the Terminal window which file
to download, so type “fload ;b” and select your file, which should be named something like
MOTORLAB.ABS.S19 (the *.S19 file is compiled code in the proper format for downloading).
Once your code is finished downloading, the You are now ready to execute your code. Type
“go” or restart the 9S12C32 with SW1 in the “Run” position and connect using Tera Term to
use serial IO. The proper settings are at 115.2Kbaud, no flow control, and be sure to init the
SCI using TERMIO_Init().

CMPE 118 Lab Number 3 Due by 5:00 PM on February 2, 2011 3

You must include the wiring diagrams of the circuits you used, noting which bits were used and
what connections were made on the HC12 IO Board and the CMPE118 DS3658 Module board, the
sign-off sheet, the answers to the questions in part 1.6, as well as a listing of the software used to
control the motor. All wiring diagrams and schematics should be completed using the OrCAD
Capture program provided on each workstation.

In the report:

Part 2 Exploring DC Motors

CKO Ch. 22, 23, 24, 26 and 27 Reading:

Complete the following exercises: Assignment:

Basic Waveforms

2.1) Set the 'scope up for dual trace and examine the waveforms at the input and output of the
DS3658. Draw a neat and readable representation of the two wave-forms. Include at least
2 full cycles. Label the parts of the waveform to show the active (driven) portion of the
waveform, the decay period as the motor field collapses, the peak of the inductive kickback,
and the back-EMF generated by the motor. Do this at 2 duty cycle levels (i.e. 20% and 80%).
Make a separate scope face drawing for each. Note the different back-EMF values at the
different motor speeds. To best see the back-EMF, you might want to draw a composite of
two waveforms, one with the motor stalled (hold the shaft to keep it from turning) and one
with the motor turning.

Using a Zener
in lieu of the
kick-back diode

2.2) Disconnect the clamp diode from the circuit and replace it with the 15 volt zener in a
configuration like the one shown below. Note: the band on the zener diode body
corresponds to the horizontal bar in the zener symbol. Repeat the labeled waveform
drawing from Part 2.1. Contrast the decay times for the 2 techniques; be specific about
durations. To do this you will probably need to use a different time scale on the ‘scope.
This portion will be most clear if you examine the alternatives at a very low duty cycle (i.e.
active for 1 part in 256). This way the effects of back EMF do not obscure the decay time.
From this exercise you can see how a zener protects the output transistor by limiting the
peak voltage to the zener voltage, and at the same time minimizes the decay time of the
collapsing field. It is important to minimize this decay time in order to make the duty cycle
response of the motor as linear as possible. At very high duty cycles it would be possible for
a long delay time to completely overlap the un-driven portion of the waveform.

CMPE 118 Lab Number 3 Due by 5:00 PM on February 2, 2011 4

 The Limits of
Software control

 2.3) Using the oscilloscope and/or the counter-timer, determine the frequency of the duty cycle
waveform that you are generating. What is the frequency?

 2.4) Can you find a way to increase the operating frequency? (Look at how to shorten your cycle
time to the minimum.)

 2.5) What happens to the upper frequency limit if we only have 7 bits of resolution? How about
10 bits? We are making a trade-off between resolution and frequency of operation.

 2.6) Given a resolution, what is the key parameter in determining the total period of the PWM
signal?

 2.7) Can your solution achieve a full range of operation? (i.e. What happens if you try to get 0%
or 100% duty cycle). If it can't, don't try and fix it, just explain why it won't work.

 2.8) For a given duty cycle, what are the sources of error in the approach you have chosen? (i.e.
if you ask for 50% duty cycle do you get it? ...theoretically, that is, you probably will not be
able to measure the error.)

Several scope face drawings are requested; please make your drawings legible. Using different
colors for different waveforms is helpful. Include the discussion requested in Part 2.2. Be sure also
to include in the lab report your answers to the all the questions in Parts 2.3-2.8. To ease the
grading task please quote the question you are answering before your answer. This way the
grader can read the question you think you are answering followed by your answer.

In the report:

Part 3 Interfacing to a Stepper Motor

CKO Ch. 26, the CMPE118 A3949 H-Bridge Driver Module documentation, STEPS12 software
module documentation.

Reading:

You are to design the necessary software to run on the 9S12C32 to drive the supplied stepper
motor in Full Drive, Wave Drive, and Half-Step Drive modes. After demonstrating this to the TA or
tutors, you will use a hardware stepper driver to drive the same motor.

Assignment:

Set-Up:

3.1) For this part, you should use the CMPE118 A3949 Dual H-Bridge Driver Module board.

 3.2) You will need to connect power and ground to J3 of the CMPE118 H-Bridge Module, which
will in turn supply current to the stepper motor. Note that you must supply it using the
+12V source. J4 of the CMPE-118 H-Bridge Module will need to interfaced to the PortA on
9SC32 as follows to work properly with the STEPS12 module:

DA (J4.4) connected to PA1, EA (J4.3) to PA0, DB (J4.8) to PA3, and EB (J4.7) to PA2. Note:
the motor drive board and I/O board need to have a common ground (back at the power
supply).

 3.3) You will have to probe the motor wires to determine which wires correspond to which coils
and then connect those wires to the proper motor outputs on the Drive Module. Use the
STEPS12 software module to control the Drive Module and ensure the motor rotates
properly with the provided modules. You will need to experiment with the motor coil
polarities to get the motor to rotate. If at first you don't succeed, try, try again (there are
only a few possibilities

CMPE 118 Lab Number 3 Due by 5:00 PM on February 2, 2011 5

 3.4) Now, edit the STEPS12 module to drive the motor using Wave Drive and Half-Step Drive.
You will have to edit the state machine outputs and add additional states.

 3.5) After verifying your motor can be driven all three ways, increase the frequency until it stops
stepping. How fast can you go under each mode of operation? Note that having a load on
the motor helps here (a finger should be fine).

 3.6) Now run the motor forward a complete revolution then in reverse for a complete
revolution—did you lose steps? How fast can you operate the motor without losing steps
(for accurate positioning)?

 3.7) After demonstrating the above code to the TAs/Instructors and getting signed off, get one of
the CMPE-118 Stepper Motor Driver boards. These boards have only two control signals,
step and direction, and a jumper to select Full or Half-Step Drive, as discussed in the
attached description of the module. You will now have to write code to produce these
signals.

 3.8) Repeat parts 3.5 and 3.6 using the stepper driver under both Full and Half-Step operation.
How did this compare to your software driver? Demonstrate the working stepper module
to a tutor or TA for check off.

Include the wiring diagram of the circuit you used, a copy of the code that drives the stepper
motor, discussion of the performance differences between hardware and software stepper drivers,
and the sign-off sheet from the coach. Be sure to indicate on the diagram which bits of which
ports of the 9S12C32 you used.

In the report:

Part 4 Interfacing to a DC Motor and H-Bridge

The CMPE 118 A3949 Dual 2.8A H-Bridge Module documentation. Reading:

You are to duplicate the functionality of Part 1, this time using the H-Bridge to drive the motor.
You will also need to add a little complexity. You should include a provision to change the
direction of rotation of the motor. When you have completed this task, get a tutor or TA to sign
off on its function. For this section of the lab, you should use the supplied libraries providing PWM
output.

Assignment:

Set-Up:

4.1) You will need to add a power connector to supply power to the H-bridge on the A3949 Dual
2.8A H-Bridge Module. Connect power and ground to J3 of the module.

 4.2) You will need to supply enable and direction inputs to the module. Remember to bring
ground back to the power supply for both the module and I/O board.

 4.3) Experiment and determine the maximum and minimum frequencies you can use to properly
drive your motor at a given duty cycle.

Include the wiring diagram of the circuit you used, a copy of the code that drives the DC motor and
the sign-off sheet from the coach. Be sure to indicate on the diagram which bits of which ports of
the 9SC32 you used.

In the report:

Part 5 Driving an R/C Servo Motor

CKO Ch. 27 (especially section 27.3), RC Servo tutorial at: Reading:
http://www.societyofrobots.com/actuators_servos.shtml

You are going to drive an R/C servo with position feedback. By adjusting the duty cycle of a fairly
slow PWM signal to the servo, you command a position for the head to go to and hold. Just as you

Assignment:

http://www.societyofrobots.com/actuators_servos.shtml�

CMPE 118 Lab Number 3 Due by 5:00 PM on February 2, 2011 6

read an analog value of 0-5V and adjusted the speed of the DC motor, you will now read that same
voltage and position the servo motor to correspond to the voltage. When reading 2.5V on the A/D,
the servo should be in the neutral position, with 0V positioning it at one end of the range and 5V
positioning it at the other.

Set-Up:

5.1) Important note: the R/C servos can only take +5V, so DO NOT connect them to a higher
power supply, you will kill them. Power the servos off of +5V from the power supplies, again
making sure NEVER TO EXCEED THIS—you will break the feedback circuitry around the
motor. Eventually (like in your final project) you may need to use a linear regulator to get
+5V from your batteries, but you will be wasting lots of power as heat—you will need a
heatsink.

 5.2) Connect the servo on the motor drive lab board to +5 on the RED wire, and GND on the
BROWN wire. Connect a wire from your I/O board to the ORANGE signal wire (your I/O
board and the servo need to have a common ground connection back to the power supply).

 5.3) The servo is a position feedback device. That is, it will go to and hold a specific position that
ranges from about +90 degrees to -90 degrees, with a 1.5ms pulse being CENTER. We will
provide a routine to produce this signal, and it will be up to you modify it further to produce
a range of duty cycles.

 5.4) Experiment and determine the minimum change of the pulse high time that results in
motion of the servo head.

 5.5) Experiment and determine the minimum and maximum duty cycles that the servo is able to
respond to. How do these limits and the neutral duty cycle correspond to head position?

 5.6) Use the potentiometer from Part 1, after first checking that it stays within the range 0-5V, to
command a position of the servo. When sweeping from 0-5V the servo head should follow
from -90 degrees to +90 degrees. If the servo introduces noise on your power and this is
affecting your A/D readings, bypass your potentiometer with a capacitor to smooth it out.

 5.7) Show the completed servo control to the tutors or TA for your final checkoff.

Include the wiring diagram of the circuit you used, a copy of the code that drives the servo motor,
a discussion of the behavior of the servo as relating to questions 5.4 and 5.5, and the sign-off sheet
from the coach. Be sure to indicate on the diagram which bits of which ports of the 9SC32 you
used.

In the report:

Hints on working this assignment

When you go into the lab, follow a well thought-out and systematic approach to testing both the hardware and the
software. It is a good idea to get into the habit of testing your software, as much as possible, separately from testing your
hardware. This makes trapping failures much easier (and debugging is ALWAYS the longest task).

If you really did your preparation properly, you should come into the lab ready to build and test the hardware in Part 1.
If you have spent more than one hour on any single task, after coming in prepared as described above, something is
wrong! STOP and ask a TA or your neighbor to take a look at what you are doing. Often a new look will spot simple
problems that you've missed.

And, needless to say, better preparation for this lab (reviewing the reading, examining the data sheets, planning your
software) will greatly cut down on the amount of time in the lab. It is very inefficient to try to do the prep at the same time as
doing the lab.

CMPE 118 Lab Number 3 Due by 5:00 PM on February 2, 2011 7

Time Summary

Lab #3

Be sure to turn this in with your lab report

This information is being gathered solely to produce statistical information to help improve the lab assignments.

Pre-Lab Preparing Outside of the lab ____________ In the lab working this part__________

Part 1 Preparing Outside of the lab ____________ In the lab working this part__________

Part 2 Preparing Outside of the lab ____________ In the lab working this part__________

Part 3 Preparing Outside of the lab ____________ In the lab working this part__________

Part 4 Preparing Outside of the lab ____________ In the lab working this part__________

Part 5 Preparing Outside of the lab ____________ In the lab working this part__________

Report Preparing the Lab Report ______________

Partner Evaluation

Lab #3

Email the Professor (only) at mailto:elkaim@soe.ucsc.edu with a subject line of:
“CMPE118 Lab 3 Partner Evaluation” and include:

(1) Partner’s name:

Rate them on a scale of 1 (bad) to 5 (excellent) on the following areas:

(2) Knowledge:

(3) Prep:

(4) Work:

(5) Neatness/Cleanup:

This will be used to help us match partners for the project, and is extremely important. Failing to send
this in will result in a 20% penalty on your lab grade.

mailto:elkaim@soe.ucsc.edu�

X Scale

Ch1 Scale

Ch. 2 Scale

X Scale

Ch1 Scale

Ch. 2 Scale

X Scale

Ch1 Scale

Ch. 2 Scale

Page 1 of 1

The CMPE118 HC12 IO Board

Background:
The 9S12C32 Module is a single-board computer produced by Technological Arts, which integrates a
Motorola 9S12C32 microcontroller, 2K of RAM scratchpad memory, 32K of EEPROM program memory,
RS232 level-shifters, voltage regulation, and CPU voltage monitoring, all into a tidy little PC board.

CMPE118 uses the 9S12C32 as the single board computer platform throughout the lab exercises and final
project. Since the 9S12C32 wasn’t designed with just CMPE118 in mind, it’s not exactly what we want, so
we’ve designed and manufactured the CMPE118 HC12 IO Board to get us closer to the ideal.

The HC12 IO Board has 4 major functions:

1. Bring all connections from the 9S12C32’s main header out so that they are easy to access and
clearly labeled

2. Provide voltage regulation and power supply protection circuitry
3. Provide over-voltage and over-current protection circuitry on all port pins.

Using the CMPE118 HC12 IO Board:
Using the CMPE118 HC12 IO Board should be straightforward. All the connections that will typically be
made to the board are located around the edge of the board, and are clearly labeled and logically grouped.

Digital Input/Output and A/D Converter Inputs:
Following is a description of the I/O available on the HC12 IO Board:

Port A (J7), Port B (J8), Port E (J9), and Port P (J10)
Port A, B, E, and P all act as general purpose input and output ports. In CMPE118, we use PTA0-
PTA3 to provide digital I/O ports for the STEPS12 module.

Port AN/AD (J12):
Port AD on the newer 9S12C32 and acts as general purpose I/O pins and also analog inputs for the
analog to digital converter.

Port T (J11):
Port T on the 9S12C32 acts as general purpose input and output ports and can be configured for a wide
variety of uses. In CMPE118, we use it mostly to provide PWM and Pulse signals with our PWM and
PLS software libraries. PWM outputs are limited to PT0-PT4

All port pins available for the user on the CMPE118 HC12 IO Board are protected from over-voltage and
over-current conditions by the use of series resistors (to limit current) and clamping diodes (to limit
voltage). To see how this is implemented, please refer to the attached schematic.

Power Regulation and Protection Circuitry:
The CMPE118 HC12 IO Board must be powered by connecting IN to a voltage supply where:

+6VDC < IN < +18VDC

This input voltage is regulated down to +5VDC for the 9S12C32 and the protection circuitry by an
LM2940CT-5.0 low drop-out voltage regulator. Reverse-polarity protection is provided by a low-forward-
voltage-drop diode (D1) on the positive Vin terminal. ESD protection and protection against supplying the
Interface PCB with extremely high input voltage is provided by a 27V-trip transient voltage suppressor
(TVS), at D3. In addition, the current flow for the entire board is limited to 500mA by a fuse.

Page 1 of 2

The CMPE118 DS3658 Driver Module
Rev. 2

Dept. of Computer Engineering, UCSC

Background:
The DS3658 is a four-channel, high-current peripheral driver, manufactured by National Semiconductor. It
integrates logic-level inputs, four open-collector output channels (each capable of sinking a maximum of
600mA), and internal kickback diodes.

The CMPE118 DS3658 Driver Module PCB provides a convenient and robust interface to the DS3658.
Separate connectors provide access to the logic-level inputs, high-current switched outputs, kickback
diodes, and the Module’s power supply input.

Using the CMPE118 DS3658 Driver Module:
In order to make use of the CMPE118 DS3658 Driver Module, you will need to be familiar with the
various connectors and their purposes. Since each connector has a single logical function (inputs, outputs,
power supply, etc.) this is straightforward.

Logic-Level Inputs (J1):
Access to the logic-level inputs to each of the four channels of the DS3658 is provided through J1. In order
to turn on a channel’s high-current, open-collector output, a logic-level high must be supplied to that
channel’s input pin. The attached data sheet for the DS3658 provides complete specifications for the drive
requirements of these inputs.

Logic ground connections must also be made through this connector. This will ensure that the ground of
the (off-board) logic command circuitry and the ground of the CMPE118 DS3658 Driver Module agree.

The pinout of J1 is as follows:

J1 Connection
pin 1 logic ground
pin 2 Channel A input
pin 3 Channel B input
pin 4 Channel C input
pin 5 Channel D input
pin 6 logic ground

High-Current Switched Outputs (J2):
Access to the open-collector switched outputs is provided through the screw-terminal connector at J2.
Each channel is capable of sinking a maximum of 600mA, and multiple channels may be used in parallel to
provide additional current capability (see the attached data sheet). The pinout of J2 is as follows:

J2 Connection
pin 1 Channel A output
pin 2 Channel B output
pin 3 Channel C output
pin 4 Channel D output

Integrated Kickback Diodes (J3):
Access to the DS3658’s integral kickback diodes is provided through the screw-terminal connector at J3.
There are 2 kickback diodes built into the DS3658, each protecting two of the IC’s four channels. If they
are to be used to protect the circuitry of the DS3658 from being subjected to excessive voltages at the open-

Page 2 of 2

collector outputs, external connections from the cathode of the internal diodes to the power supply of the
connected switched load are required. If this protection is not needed, the diodes may be left unconnected.

J2 has the following pinout:

J2 Diode Protects these outputs
pin 1 CLAMP 1 Channel A & Channel B
pin 2 CLAMP 2 Channel C & Channel D

DS3658 Power Supply and High-Current Ground Connector (J4):

J4, pin 1: The DS3658 requires a power supply for its logic circuitry. Provisions for this are made through
J4, pin 1. An LM2931Z-5.0 low drop-out, 100mA voltage regulator is provided on the DS3658 Driver
Module PCB so that any voltage between 5.6V (minimum) and 18V (maximum) may be supplied to J4,
pin 1. This makes the DS3658 module much easier to use, since it includes its own voltage regulation and
does not require an externally regulated +5V supply.

DS3658 Power Supply Requirements: +5.6V < Vin (J4, pin 1) < +18V

J4, pin 2: Since the DS3658 is capable of switching four channels at a maximum of 600mA each, care
must be taken in the methods employed returning this substantial current to ground. For this reason, a
separate high-current ground connection is available at J4, pin 2. A separate connection should be made
between J4, pin 2 and the power supply of the load(s) connected to the IC’s outputs. This will ensure that
the logic power supply maintains a clean ground.

CMPE118 DS3658 Driver Module Schematic:

A
B
C
D

SWITCHED
OUTPUTS

DIODE
CLAMPS

CHANNELS A,B
CHANNELS C,D

GND

GND

HIGH-CURRENT GND
V+

SCREW
TERMINALS

SCREW
TERMINALS

J4
Vin

mono

C1
0.1uF

1
2

J3

1
2
3
4

J2

5V

DS3658

11VCC
16IN A15IN B10IN C9IN D
14EN
4GND5GND 12GND

13GND

7CLAMP 2
2CLAMP 1

8OUT D
6OUT C
3OUT B
1OUT A

U1

1
2
3
4
5
6

J1
CONTROL

1IN

2

COM

3OUT

U2
LM2931Z-5

+

16V elect

C2

120uF

mono

C3
0.1uF

5V

R1
10k

J4
Vin

mono

C1
0.1uF

1
2

J3

1
2
3
4

J2

5V

DS3658

11VCC
16IN A15IN B10IN C9IN D
14EN
4GND5GND 12GND

13GND

7CLAMP 2
2CLAMP 1

8OUT D
6OUT C
3OUT B
1OUT A

U1

1
2
3
4
5
6

J1
CONTROL

1IN

2

COM

3OUT

U2
LM2931Z-5

+

16V elect

C2

120uF

mono

C3
0.1uF

5V

R1
10k

The CMPE 118 A3949 Dual 2.8A H-Bridge Module
Dept. of Computer Engineering, UCSC

Background:
Allegro’s A3949 is a high-current single H-bridge driver with integrated control logic. It comes in 16-pin
SOIC and TSSOP packages. Internal circuit protection includes thermal shutdown with hysteresis,
undervoltage monitoring, and crossover current protection.

The CMPE118 A3949 Dual 2.8A H-bridge Module provides a convenient and robust interface for two
A3949s. Separate connectors provide access to the logic-level inputs, H-bridge output connections, and the
IC’s power supply. This module makes use of a 7805 regulator for pull-ups and a TL7726QP latch for
protecting the digital inputs. External Clamping diodes are included to complement the A3949s internal
diodes and protect against inductive kickback.

The data sheet for the A3949 motor driver 2.8A H-bridge chip can be found on the Allegro.com website at:
http://www.allegromicro.com/en/Products/Part_Numbers/3949/3949.pdf

Using the CMPE118 A3949 Dual 2.8A H-Bridge Module:
In order to make use of the CMPE118A3949 Dual H-Bridge Module, you will need to be familiar with the
various connectors and their purposes. Since each connector has a single logical function (inputs, outputs,
power supply, etc.) this is straightforward.

Logic-Level Inputs (J4):
Access to the logic-level inputs of the A3949 is provided through J4. Directional and enable control for
each of the two H-Bridges is specified through these connections.

There is no logic ground on this board to reduce noise. As such, care must be taken to provide a common
ground.

The pinout of J4 is as follows (all other pins are NO CONNECT):

J4 Connection
Pin 3 Enable A
Pin 4 Direction A
Pin 7 Enable B
Pin 8 Direction B

Motor/Load Connections (J3):
Connections of one or two independent motors or similar loads should be made through the screw-terminal
connector located at J3. The pinout of J3 is as follows:

J3 Connection
pin 1 & pin 2 motor/load A
pin 3 & pin 4 motor/load B

Power Supply and High-Current Ground Connector (J1):

J1, pin 1: The A3949 requires a power supply for both the motors as well as its logic circuitry. Provisions
for this are made through J1, pin 1, which includes a Schottky diode to provide reverse bias protection. A
7805 low drop-out, 100mA voltage regulator is provided on the Module PCB to clamp the digital inputs
between -0.2V and 5.2V. The chip will operate between 8V (minimum) and 36V (maximum). This makes
the A3949 Module much easier to use, since it includes its own voltage regulation and does not require an

Page 1 of 2

http://www.allegromicro.com/en/Products/Part_Numbers/3949/3949.pdf

externally regulated +5V supply. Note that there is no ground connection between the input port (J4) and
the power input (J1), for noise reasons. The source of the input signal should be connected back to ground
at the power supply or batteries.

A3949 Power Supply Requirements: +8V < Vin (J1, pin 1) < +36V

J1, pin 2: Since the module is capable of switching two H-Bridge channels at a maximum of 2.8A each,
care must be taken in the methods employed returning this substantial current to ground. For this reason, a
separate high-current ground connection is available at J1, pin 2. A separate connection should be made
between J3, pin 2 and the power supply of the motors/loads connected to the IC’s outputs. This will ensure
that the logic power supply maintains a clean ground.

J1 Connection
Pin 1 Power (8V to 36V)
Pin 2 High Current Ground

CMPE118 A3949 Dual 2.8A H-Bridge Module Schematic:

Page 2 of 2

A2

A1

V+

5v

V+

Title

Size Project Rev

Date: Sheet of

Engr.:

motor board.dsn 1.2

Mechatronics DC Motor Board

A

1 1Monday, January 26, 2009

Max DunneASL, UCSC

Title

Size Project Rev

Date: Sheet of

Engr.:

motor board.dsn 1.2

Mechatronics DC Motor Board

A

1 1Monday, January 26, 2009

Max DunneASL, UCSC

Title

Size Project Rev

Date: Sheet of

Engr.:

motor board.dsn 1.2

Mechatronics DC Motor Board

A

1 1Monday, January 26, 2009

Max DunneASL, UCSC

+

C10
.33uF
C10
.33uF

R6 270R6 270

R7 270R7 270

U1

LM2931-5.0/SO

U1

LM2931-5.0/SO

OUT
1

IN
8

G
N

D
2

G
N

D
3

G
N

D
6

G
N

D
7

D6

DIODE

D6

DIODE

R8 270R8 270

R5 270R5 270

C4

.1uF

C4

.1uF

R2

330

R2

330

D12

DIODE

D12

DIODE

D11

DIODE

D11

DIODE

J4

HEADER 14

J4

HEADER 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14

C8

.22uF

C8

.22uF

R3

330

R3

330 D10

DIODE

D10

DIODE

D5

DIODE

D5

DIODE

D9

DIODE

D9

DIODE

J3

Motors

J3

Motors

1
2
3
4

U4

TL7726QP

U4

TL7726QP

CL1
2

CL2
3

CL3
4

CL4
5

CL5
6

CL6
7

V
R

E
F

8
G

N
D

1

D1

RED

D1

RED
C5

.1uF

C5

.1uF

C7

.1uF

C7

.1uF

C6

.22uF

C6

.22uF

D8

DIODE

D8

DIODE

C1

.1uF

C1

.1uF

R1

330

R1

330

U2

A3949

U2

A3949

MODE
2

PHASE
3

SLEEP
5

ENABLE
6

G
N

D
4

G
N

D
1

3
V

B
B

9

V
R

E
G

1
5

CP1
11

CP2
12

VCP
14

OUTA
7

OUTB
10

S
E

N
S

E
8

D3

RED

D3

RED
R4

330

R4

330

J1

Power

J1

Power

1
2

+ C2
100uF

+ C2
100uF

C9
.1uF

C9
.1uF

D2

GREEN

D2

GREEN

D7

DIODE

D7

DIODE

U3

A3949

U3

A3949

MODE
2

PHASE
3

SLEEP
5

ENABLE
6

G
N

D
4

G
N

D
1

3
V

B
B

9

V
R

E
G

1
5

CP1
11

CP2
12

VCP
14

OUTA
7

OUTB
10

S
E

N
S

E
8

D4

GREEN

D4

GREEN

D13D13

The CMPE 118 A3982 2.0A Stepper Motor Module
Dept. of Computer Engineering, UCSC

Background:
Allegro’s A3982 is a complete microstepping motor driver with built-in translator for easy operation. It is
designed to operate bipolar stepper motors in full-, half-, quarter-, and sixteenth-step modes, with an output
drive capacity of up to 35 V and ±2 A. The A3982 includes a fixed off-time current regulator which has the
ability to operate in Slow or Mixed decay modes. It comes in 24-pin SOIC and TSSOP packages. Internal
circuit protection includes thermal shutdown with hysteresis, undervoltage monitoring, and crossover
current protection.

The CMPE118 A3982 Stepper Motor Module provides a convenient and robust interface for the A3982.
Separate connectors provide access to the logic-level inputs, Stepper motor coil output connections, and the
IC’s power supply. This module makes use of a 7805 regulator for pull-ups and a TL7726QP clamp for
protecting the digital inputs.

The data sheet for the A3982 translator and driver chip can be found on the Allegro.com website at:
http://www.allegromicro.com/en/Products/Part_Numbers/3982/3982.pdf

Using the CMPE118 A3982 2.0A Stepper Motor Module:
In order to make use of the CMPE118 A3982 Stepper Motor Module, you will need to be familiar with the
various connectors and their purposes. Since each connector has a single logical function (inputs, outputs,
power supply, etc.) this is straightforward.

Logic-Level Inputs (J5):
Access to the logic-level inputs of the A3982 is provided through J5. Enable, Direction, and STEP control
for the stepper driver is specified through these connections.

There is no logic ground on this board to reduce noise. As such, care must be taken to provide a common
ground back at the power supply or battery.

The pinout of J5 is as follows (all other pins are NO CONNECT):

J5 Connection
Pin 3 Step
Pin 4 Direction
Pin 5 Enable

Full/Half-Step Connections (J3):
The A3982 is capable of both full step (2 coils energized) or half-step (1-2 coils energized); this is set with
the jumper J3. If it is OPEN, then the chip is set to FULL STEP mode. If a jumper is placed across the pins
of J3, then the chip is set for HALF STEP mode.

Motor/Load Connections (J2):
Connections to the coils of the stepper motor should be made through the screw-terminal connector located
at J2. The pinout of J2 is as follows:

J2 Connection
pin 1 & pin 2 Phase A
pin 3 & pin 4 Phase B

Page 1 of 2

http://www.allegromicro.com/en/Products/Part_Numbers/3982/3982.pdf

Power Supply and High-Current Ground Connector (J1):

J1, pin 1: The A3982 requires a power supply for both the motors as well as its logic circuitry. Provisions
for this are made through J1, pin 1, which includes a Schottky diode to provide reverse bias protection. A
7805 low drop-out, 100mA voltage regulator is provided on the Module PCB to clamp the digital inputs
between -0.2V and 5.2V. The chip will operate between 8V (minimum) and 36V (maximum). This makes
the A3982 Module much easier to use, since it includes its own voltage regulation and does not require an
externally regulated +5V supply. Note that there is no ground connection between the input port (J5) and
the power input (J1), for noise reasons. The source of the input signal should be connected back to ground
at the power supply or batteries.

A3982 Power Supply Requirements: +8V < Vin (J1, pin 1) < +36V

J1, pin 2: Since the module is capable of switching both coils on the stepper motor to 2.0A, care must be
taken in the methods employed returning this substantial current to ground. For this reason, a separate
high-current ground connection is available at J1, pin 2. A separate connection should be made between
J3, pin 2 and the power supply or batteries. This will ensure that the logic power supply maintains a clean
ground (the microcontroller must have a common ground to the power supply as well).

J1 Connection
Pin 1 Power (8V to 36V)
Pin 2 High Current Ground

CMPE118 A3982 2.0A Stepper Motor Module Schematic:

Page 2 of 2

 9S12C32 Analog to Digital Converter Interface Module

Purpose:
This module provides a set of interface functions to perform a simplified initialization of the A/D converter system on the
Freescale MC9S12C32 microcontroller. The initialization function should be called before any use is made of Port AD (J12).
After the initialization is complete, reads of the analog input pins should be made using the ADS12_ReadADPin() function.
Reads of digital input pins on the AD port should be made by reading from PTAD. Writes to outputs defined on port AD
should be performed by making assignments to PTAD.

Header:
The header file ADS12.h should be included in any module wishing to use the functions provided by this module.

Initialization
Function:

ADS12ReturnTyp ADS12_Init(char * modeString)

Parameters:

char [9] modeString
A null terminated string of 8 ASCII characters to describe the mode of each of the pins on Port AD. The legal
values are: I for digital input, O for digital output, A for analog input. The string positions, reading left to right,
correspond to the pins MSB to LSB (modeString[0]=MSB, modeString[7]=LSB)

Returns:

ADS12_Err if the input string is malformed

ADS12_OK if the mode string was OK

Description:

Initializes Port AD data direction register & ATDDIEN for digital I/O and the A/D converter to multi-channel, continuous
conversion.

Notes:

Assumes a 24MHz bus clock, but simply sets the default values for now. Enforces a single block of A/D channels even though
it is possible to make a contiguous sequence that occupies a non-contiguous block. For example, channels 6,7,0,& 1 are
sequence contiguous but occupy 2 blocks so would be rejected by this code.

Usage:

if (ADS12_Init("OOIIAAAA") == ADS12_OK)

would initialize the A/D converter and port AD with bits 6 & 7 as outputs, 4 & 5 as inputs and bits 0-3 as analog inputs and
test to see that the initialization was successful.

Analog Pin Read
Function:

short ADS12_ReadADPin(unsigned char pinNumber)

Parameters:

unsigned char PinNumber
the Port AD pin number to read the analog value from

Returns:

CMPE 118 A/D Converter Library for the MC9S12C32 2
the A/D conversion result for the selected pin (10 bits right justified) if the pin number is legal, -1 otherwise

Description:

Reads and returns A/D conversion result from the appropriate A/D converter register.

Usage:

ADS12_ReadADPin(0)

Would read the analog value on bit 0 of port AD.

 9S12C32 Pulse Width Modulator Interface Module

Purpose:
This module provides a set of interface functions to perform a simplified initialization of the Pulse Width Modulation system
on the Freescale MC9S12C32 microcontroller. The initialization function should be called before any use is made of the other
functions. After the initialization is complete bits 0, 1 & 2 of Port T on J11 are dedicated to the PWM output functions for
PWM channels 0, 1 & 2.

Header:
The header file PWMS12.h should be included in any module wishing to use the functions provided by this module.

Initialization

Function:
void PWMS12_Init(void)

Parameters:

None

Returns:

Nothing

Description:

Initializes the PWM subsystem for all three channels. Gives the PWM subsystem control of Port T bits 0,1 & 2. Sets the initial
PWM period to 2mS. Sets the Duty Cycle resolution to 1% and output duty cycle to 0%.

Notes:

The duty cycle resolution is fixed at 1% for this library.

Usage:

PWMS12_Init();

would initialize the PWM subsystem.

Set Duty Cycle
Function:

signed char PWMS12_SetDuty(unsigned char dutyCycle, unsigned char channel)

Parameters:

unsigned char dutyCycle
a number between 0 & 100, the new duty cycle

unsigned char channel
PWMS12_CHAN0, PWMS12_CHAN1 or PWMS12_CHAN2 to specify which channel's duty cycle to set.

Returns:

Signed char
PWMS12_ERR if requested channel does not exist or the duty cycle is over 100%.
PWMS12_OK otherwise

CMPE 118 A/D Converter Library for the MC9S12C32 2

Description:
Sets the output duty cycle on the specified channel. Setting the duty cycle to 0% (full off) or 100% (full on) allows you to
control the PWM channel as if it were a digital output.

Usage:

PWMS12_SetDuty(50, PWMS12_CHAN0)

Would set channel 0 (Port T bit 0) to output a 50% duty cycle signal at the previously programmed period.

Set PWM Period
Function:

signed char PWMS12_SetPeriod(unsigned short newPeriod, unsigned char group)

Parameters:

unsigned char newPeriod
a defined constant to specify the new period. Do not enter a number in mS or any other time units. This constant
encodes the values needed to program the 9S12C32 timer system. Use only the pre-defined constants documented
here or in PWMS12.h.

unsigned char group
PWMS12_GRP0 to specify group 0, which applies to channels 0 & 1 or
PWMS12_GRP1 to specify group 1, which applies to channel 2.

Returns:

Signed char
PWMS12_ERR if requested group is invalid.
PWMS12_OK otherwise

Description:

Sets the output period on the specified channel group.

Notes:

Takes newPeriod directly. Makes no sanity check on the period being programmed.

Usage:

PWMS12_SetPeriod(PWMS12_PERIOD_4MS, PWMS12_GRP0)

Would set channel group 0 (channels 0 & 1) to output a duty cycle with a 4mS period.

Disable PWM Subsystem
Function:

void PWMS12_End(void)

Parameters:

None

Returns:

Nothing

CMPE 118 A/D Converter Library for the MC9S12C32 3

Description:
Disables the PWM subsystem for all three channels. Gives the control of Port T bits 0,1 & 2 back to the DDR and port
registers.

Usage:

PWMS12_End();

would disbale the PWM subsystem.

Defined Constants For Period

#define PWMS12_4000US 20510

#define PWMS12_3300US 8390

#define PWMS12_2500US 8342

#define PWMS12_2000US 16414

#define PWMS12_1950US 4330

#define PWMS12_1650US 4294

#define PWMS12_1250US 4246

#define PWMS12_1000US 12318

#define PWMS12_825US 198

#define PWMS12_650US 4174

#define PWMS12_500US 8222

/**
 Module
 steppers12.h

 Revision
 1.0.1

 Description
 Header File for the Stepper Motor Driver Module

 Notes

 History
 When Who What/Why
 -------------- --- --------
 02/01/06 13:34 rjk Began Coding
**/

#ifndef STEPS12_H
#define STEPS12_H

#define STEPS12_RATE_10MS 0x49// set OSCCLK divider to 10*2^13 (100Hz)
#define STEPS12_RATE_1MS 0x17// set OSCCLK divider to 8*2^10 (1000Hz)

void STEPS12_Init(long Period, unsigned char Direction, long Steps);
void STEPS12_RTI_Resp(void);
void STEPS12_Stop(void);

#endif /* STEPS12_H */
/*------------------------------ End of file ------------------------------*/

#define TEST
/**
 Module
 steps12.c

 Description
 This is a module to drive a 2-phase stepper motor using the
 CMPE118 LM298 dual H-Bridge Module. The module uses a
 periodic interrupt to act as a heartbeat. The stepper is then advanced
 at a multiple of that frequency.
 Notes

 History
 When Who What/Why
 -------------- --- --------
 02/01/06 13:34 rjk Began Coding
**/

/*----------------------------- Include Files -----------------------------*/
#include <hidef.h> /* common defines and macros */
#include <mc9s12c32.h> /* derivative information */
#include <steps12.h>
#include <stdio.h>
#include <termio.h>

/******* GLOBALS ****************************/

#define MAX_STEPS 4 // total number of step states for driving FULL STEP
static unsigned char StepDirection;
static long StepsLeft;
static int StepState;
static long StepPeriod;
static long Counter;
static unsigned char CurrentlyStepping;

/**
 Function
 STEPS12_Init

 Parameters
 Period: Number of milliseconds between each step (must be an integer);
 Direction: 0 for CW or non-zero for CCW
 Steps: Number of steps to advance motor

 Returns
 None.

 Description
 Initializes the RTI module for OSCCLK=8MHz and sets global variables.
 Notes

 **/
void STEPS12_Init(long Period, unsigned char Direction, long Steps) {
 RTICTL = STEPS12_RATE_1MS; // set OSCCLK divider
 CRGFLG = CRGFLG_RTIF_MASK; /* clear any pending int */
 CRGINT |= CRGINT_RTIE_MASK; /* enable the RTI int */

 StepDirection=Direction;
 StepsLeft=Steps;
 StepState=1;
 StepPeriod=Period;
 Counter=1;
 CurrentlyStepping=1;

 DDRA|=0x0F; // First 4 pins on PORTA all set to be outputs.

 EnableInterrupts;

 return;
}

/**
 Function
 STEPS12_RTI_Resp

 Parameters
 None.

 Returns
 None.

 Description
 Interrupt routine that consists of the state machine for stepping the motor
 in the proper order. Interrupt Routine to handle RTI. Function will be
 executed by rate defined in STEPS12_Init.

 Notes

**/

void interrupt 7 STEPS12_RTI_Resp(void)
{
 CRGFLG = CRGFLG_RTIF_MASK; /* clear the source of the int */

 if(Counter>=StepPeriod)
 Counter=1;
 else {
 Counter++;
 return;
 }

 if(StepsLeft<=0) {
 CurrentlyStepping=0;
 return;
 } else
 StepsLeft--;

 if(StepDirection) {
 if(StepState>=MAX_STEPS)
 StepState=1;
 else
 StepState++;
 } else {
 if(StepState<=1)
 StepState=MAX_STEPS;
 else
 StepState--;
 }

 // Use PortA for motor direction logic
 // PortA0 = Motor 1 enable
 // PortA1 = Motor 1 direction
 // PortA2 = Motor 2 enable
 // PortA3 = Motor 2 direction

 // For Full Step driving both motor outputs always enabled
 // HINT: both motors outputs will not always be on for wave driving or
 // half step driving!

 PORTA|=PORTA_BIT0_MASK;
 PORTA|=PORTA_BIT2_MASK;

 switch(StepState) {
 case 1:
 PORTA|=PORTA_BIT1_MASK;
 PORTA|=PORTA_BIT3_MASK;
 break;
 case 2:
 PORTA|=PORTA_BIT1_MASK;
 PORTA&=~PORTA_BIT3_MASK;
 break;
 case 3:
 PORTA&=~PORTA_BIT1_MASK;
 PORTA&=~PORTA_BIT3_MASK;
 break;
 case 4:
 PORTA&=~PORTA_BIT1_MASK;
 PORTA|=PORTA_BIT3_MASK;
 break;
 }

 return;
}

/**
 Function
 STEPS12_Stop

 Parameters
 None.

 Returns
 None.

 Description
 Stops the RTI from advancing the motor.

 Notes

**/

void STEPS12_Stop(void) {
 StepsLeft=0;

 return;
}

#ifdef TEST

void main(void) {

 while(1) {
 while(CurrentlyStepping); // wait until the active steps are done
 STEPS12_Init(100,1,10);
 while(CurrentlyStepping);
 STEPS12_Init(100,0,10);
 }

 return;
}
#endif // TEST
/*------------------------------ End of file ------------------------------*/

E:\Elkaim\UCSC\Classes\CMPE-118 Mechatronics 2009\Labs\servobasic.h Friday, December 31, 2010 12:12 PM

/**
 *
 * CMPE-118 basic servo driving for Lab 3
 *
 * History
 * When Who What/Why
 * -------------- --- --------
 * 1/30/09 jbb simplified for lab exercise
 *
 * Original BotLib created by Scott Early as part of CMPE-118 in Winter 2008
 */

#ifndef SERVO_H
#define SERVO_H

#include <mc9s12c32.h> /* derivative information */

#define uchar unsigned char

/**
 * General Functions
 */

void Bot_Init(void); // call before any other library functions

/**
 * R/C Servo Control
 *
 * Actual positional accuracy is about ±5 degrees
 */

void RCServo_Set(char position);
// position: a value in degrees from -60 to +60

#endif

-1-

E:\Elkaim\UCSC\Classes\CMPE-118 Mechatronics 2009\Labs\servobasic.c Friday, December 31, 2010 12:13 PM

/**
 *
 * CMPE-118 basic servo driving for Lab 3
 *
 * History
 * When Who What/Why
 * -------------- --- --------
 * 1/30/09 jbb simplified for lab exercise
 *
 * Original BotLib created by Scott Early as part of CMPE-118 in Winter 2008
 */

#include <hidef.h> /* common defines and macros */
#include <mc9s12c32.h> /* derivative information */
#include <S12C32bits.h> /* bit definitions */

#include <stdio.h>
#include <stdlib.h> /* needed for rand() */
#include <termio.h>
#include <ads12.h>

/**
 * Private General Functions
 */
void Bot_SetPortBit(uchar* port, uchar bit, uchar value);

/**
 * PWM Functions
 *
 * PWM Channels 2 and 3 are used by the R/C servo functions
 */

void Bot_PWMInit(void);
void Bot_PWMSetPins(uchar pins);
char Bot_PWMSetClock(uchar clock, uchar prescale, uchar scale);
char Bot_PWMSetChannel(uchar channel, uchar enable, uchar period, uchar duty,

uchar scaler, uchar polarity, uchar cae);
char Bot_PWMSetPeriod(uchar channel, uchar period);
char Bot_PWMSetDuty(uchar channel, uchar duty);

/**
 * R/C Servo Control
 */

#define RCSERVO_PORT_PWM_0 2 // PWM channel for servo 0
#define RCSERVO_PORT_PWM_1 3 // PWM channel for servo 1

void RCServo_Init(void);

/**
 ***/

-1-

E:\Elkaim\UCSC\Classes\CMPE-118 Mechatronics 2009\Labs\servobasic.c Friday, December 31, 2010 12:13 PM

/**
 * General Functions
 */

void Bot_Init(void) {
Bot_PWMInit();
RCServo_Init();

DDRT = 0xC0;
}

void Bot_SetPortBit(uchar* port, uchar bit, uchar value) {
if (bit > 7) return;
bit &= 1;
*port = (*port & ~(1 << bit)) | (value << bit);

}

/**
 * PWM Functions
 */

void Bot_PWMInit(void) {
// PWMCTL?
PWME = 0x00; // disable all PWM channels

// Bot_PWMSetClock(clock, prescale, scale)
Bot_PWMSetClock(0, 4, 10); // motor drive 295Hz clock (pins 0, 1, 4, 5)

Bot_PWMSetClock(1, 6, 14); // RC Servo 52Hz clock (pins 2, 3)
Bot_PWMSetPins(0x0F); // enable pins 0, 1, 2, 3

}

void Bot_PWMSetPins(uchar pins) {
MODRR = pins & 0x3F; //0011 1111

}

char Bot_PWMSetClock(uchar clock, uchar prescale, uchar scale) {
if (clock > 1)

return(!0);

clock &= 1;
prescale &= 7;
if (clock == 0) {

PWMPRCLK = (PWMPRCLK & ~0x07) | prescale;
PWMSCLA = scale;

} else {
PWMPRCLK = (PWMPRCLK & ~0x70) | prescale << 4;
PWMSCLB = scale;

}
return 0;

-2-

E:\Elkaim\UCSC\Classes\CMPE-118 Mechatronics 2009\Labs\servobasic.c Friday, December 31, 2010 12:13 PM

}

char Bot_PWMSetChannel(uchar channel, uchar enable, uchar period, uchar duty,
uchar scaler, uchar polarity, uchar cae)

{
if (channel > 5) return !0;
enable &= 1;
polarity &= 1;
scaler &= 1;

// disable channel
PWME &= ~(1 << channel);

// set registers
Bot_PWMSetPeriod(channel, period);
Bot_PWMSetDuty(channel, duty);
PWMCLK = (PWMCLK & ~(1 << channel)) | scaler << channel;
PWMPOL = (PWMPOL & ~(1 << channel)) | polarity << channel;
PWMCAE = (PWMCAE & ~(1 << channel)) | cae << channel;

// enable channel
PWME |= enable << channel;

return 0;
}

char Bot_PWMSetPeriod(uchar channel, uchar period) {
if (channel > 5) return !0;
*(&PWMPER0 + channel) = period;
return 0;

}

char Bot_PWMSetDuty(uchar channel, uchar duty) {
if (channel > 5) return !0;
*(&PWMDTY0 + channel) = duty;
return 0;

}

/**
 * R/C Servo Control
 */

/* This function sets the period of a PWM signal to roughly 19ms = 53Hz

 You probably don't need to change this unless you want higher resolution-
 if you've already finished the lab!

 */
void RCServo_Init(void) {

// Bot_PWMSetChannel(channel, enable, period, duty, clock, polarity, cae)
Bot_PWMSetChannel(RCSERVO_PORT_PWM_0, 1, 254, 0, 1, 1, 0);

-3-

E:\Elkaim\UCSC\Classes\CMPE-118 Mechatronics 2009\Labs\servobasic.c Friday, December 31, 2010 12:13 PM

return;
}

/* This function should set the duty cycle of a PWM signal to position an
 R/C servo motor to the function's argument 'position'.

 After RCSerco_Init() has been called to set the period of the signal, a PWM
 signal can be made by varying the duty cycle of this signal. As provided,
 the period is set to 19ms by setting the PWMPERx register to 254 and
 setting other prescalers.

 The desired duty cycle can be created by setting the PWMDTYx register
 through the Bot_PWMSetDuty() function. When the PWM signal starts, a
 counter is set to zero and the output goes high; this counter counts
 up at a rate specified by various prescalers. When this counter value
 matches PWMDTYx, the output goes low. It remains low until the counter
 matches PWMPERx (as set in RCServo_Init()), when the counter is reset
 causing the output to go high.

 This function is currently limited by the usage of 8 bit counters. The
 resolution of the duty cycle is limited by the value of PWMPERx: there
 are only 254 gradations to which the duty cycle can be set, even fewer of
 which are useful when driving a servo.

 It is possible to concatenate the 8 bit registers into a 16 bit register
 for increased resolution. This is left as an excercise for the 118er.
 See the MC9S12C Reference Manual, section 12.4.2.5, for details. .
*/
void RCServo_Set(char position) {
/* Modify this function to set a duty cycle based on the desired position.
 1ms ~= -60 degrees,
 1.5ms ~= 0 degrees,
 2ms ~= 60 degrees
 */

uchar duty; // raw PWM duty counter

// Please, don't push the servos past this.
if (position < -60 || position > 60) return;

// Modify this to create a duty cycle based on the desired position.
duty = 20; // (20/254)*19ms = 1.5ms

//printf("Position: %03d, Duty: %02d\r\n", position, duty);

Bot_PWMSetDuty(RCSERVO_PORT_PWM_0, duty);
}

/*------------------------------- Footnotes -------------------------------*/
#ifdef SERVO_TEST

#include <stdio.h>
#include <termio.h>

-4-

E:\Elkaim\UCSC\Classes\CMPE-118 Mechatronics 2009\Labs\servobasic.c Friday, December 31, 2010 12:13 PM

#include "servobasic.h"

void main(void) {

char position = 0;

TERMIO_Init();

printf("Starting up...\n\r");

Bot_Init();
printf("Botlib initialized...\n\r");

RCServo_Set(position);

printf("Servo set to 0 degrees...\n\r");

/* Changes two degrees with every key hit...
 ...once you finish RCServo_Set()
 */

while(TERMIO_GetChar()) {
position += 2;

if (position > 60) {
position = -60;

}
RCServo_Set(position);
printf("now at %d degrees\n\r", (int)position);

}

}
#endif

-5-

	A3949_H_Bridge.pdf
	Dept. of Computer Engineering, UCSC
	Using the CMPE118 A3949 Dual 2.8A H-Bridge Module:

	J3
	Connection
	A3949 Power Supply Requirements: +8V < Vin (J1, pin 1) < +36V

	A3982_Stepper.pdf
	Dept. of Computer Engineering, UCSC
	Using the CMPE118 A3982 2.0A Stepper Motor Module:

	J2
	Connection
	A3982 Power Supply Requirements: +8V < Vin (J1, pin 1) < +36V

