Steps in Building
a Routine

Contents _
-4.1-Summary-of-Steps in Building a Routine” ~
4.2 PDL for Pros

4.3 Design the Routine

4.4 Code the Routine

4.5 Check the Code Formally

Related Topics

Characteristics of high-quality routines: Chapter 5
High-level design: Chapter 7

Commenting style: Chapter 19

Prerequisites to construction: Chapter 3

THIS CHAPTER EXAMINES THE STEPS you typically take to create a rou-
tine. Although you could view the whole book as an extended description of
how to create a routine, this chapter puts the steps in context. The chapter
focuses on programming in the small-——on the specific steps for building an
individual routine that are critical on projects of all sizes. The chapter also de-
scribes the PDL-to-code process, which reduces the work required during
design and documentation and improves the quality of both.

If you're an expert programmer, you might just skim this chapter. Look at the
summary of steps and review the PDL-to-code process. Few programmers ex-
ploit the full power of the process, and it offers many benefits.

53

Chapter 4: Steps in Building a Routine

4.1

FURTHER READING
If you want to read the

original article on PDL, look

for “PDL—A Tool for Soft-
~ ware Design” (Caine and
Gordon 1975). The descrip-
‘tion of PDL in this section

differs substantially from

the original conception of
the language.

54

Summary of Steps in Building a Routine

The many low-level details that go into building a routine don’t need to be
handled in any particular order, but the major activities—designing the rou-
tine, checking the design, coding the routine, and checking the code—are
done in the order shown in Figure 4-1.

Begin

v

Check the
design

Design the
routine

Repeat if
necessary

Code the
routine

Check the
code

Done

Figure 4-1. These are the major activities that go into constructing a routine. They're
usually performed in the order shown.

PDL for Pros

PDL (program design language) was originally developed by the company
Caine, Farber & Gordon and has been modified substantially since they pub-
lished their initial paper on it in 1975. Because PDL resembles English, it’s
natural to assume that any English-like description that collects your thoughts
will have roughly the same effect as any other. In practice, you'll find that

some styles of PDL are more useful than others. Here are guidelines for using

PDL effectively: _

e Use English-like statements that precisely describe specific operations.

¢ Avoid syntactic elements from the target programming language. PDL
allows you to design at a slightly higher level than the code itself. When
you use programming-language constructs, you sink to a lower level, -

eliminating the main benefit of design at a higher level, and you saddle
yourself with unnecessary syntactic restrictions.

4.2 PDL for Pros

-CROSS-REFERENCE

For details on commenting
at the level of intent, see
“Kinds of Comments” in
Section 19.4.

,:%'\

CODING HORROR

e Write PDL at the level of intent. Describe the meaning of the approach
-rather than how the the approach will be implemented in the target
language.

e Write PDL at a low enough level that generating code from it will be
nearly automatic. If the PDL is at too high a level, it can gloss over prob-
lematic details in the code. Refine the PDL in more and more detail until

-t seems as if it would be easier to simply write the code.

Once the PDL is written, you build the code around it and the PDL turns into
programming-language comments. This eliminates most commenting effort.
If the PDL follows the guidelines, the comments will be complete and
meaningful.

Here’s an exmnple ()t a desxgn in PDL thd[v1oL1tes v1rtually all the prmcnples '
just described:

Example of Bad PDL

increment resource number by 1

allocate a dlg struct using malloc

if malloc() returns NULL then return 1 g
invoke 0Srsrc_init to initialize a resource for the operating system
*hRsrcPtr = resource number

return @

What is the intent of this block of PDL? Because it's poorly written, it's hard to
tell. This so-called PDL is bad because it includes coding details such as
*hRsrcPtr in specific C-language pointer notation, and malloc(), a specific
C-language function. This PDL block focuses on how the code will be written
rather than on the meaning of the design. It gets into coding details—
whether the routine returns a 7 or a 0. If you think about this PDL from the
standpoint of whether it will turn into good comments, you’ll begin to under-
stand that it’s not much help. ' '

Here’s a design for the same operation in a much-improved PDL:

Example of Good PDL. .

Keep track of current number of resources in use
_If another resource is available
““"Allocate a dialog box structure -
. If a-dialog box structure could be allocated
Note that one more resource is 1n use .
Initialize the resource : B S ,
~ Store the resource number- at the 1ocation prov1ded by the ca11er '
- Endif : -
Endif '
‘Return TRUE if a new resource was created else return FALSE

55

Chapter 4: Steps in Building a Routine

FURTHER READING

For. more information on
the advantages of making
changes at the least-value
stage, see Andy Grove's
High Output Management
(Grove 1983).

56

This PDL is better than the first because it's written entirely in English; it -
doesn't use-any syntactic elements of the target language. In the first example,
the PDL could have been implemented only in C. In the second example, the
PDL doesn't restrict the choice of languages. The second block of PDL is also
written at the level of intent. What does the second block of PDL mean? It is
probably easier for you to understand than the first block.

Even though it’s written in clear English, the second block of PDL is precise
and detailed enough that it can easily be used as a basis for source-language
code. When the PDL statements are converted to comments, they’ll be a good
explanation of the code’s intent.

Here are the benefits you can expect from using this style of PDL:

PDL makes reviews easier. You can review detailed designs without ex-
amining source code. PDL makes low-level de51gn reviews easier and
reduces the need to review the code itself. - o

PDL supports the idea of iterative refinement. You start with a high-level
architecture, refine the architecture to PDL, and then refine the PDL to
source code. This successive refinement in small steps allows you to check
your design as you drive it to lower levels of detail. The result is that you
catch high-level errors at the highest level, mid-level errors at the middle
level, and low-level errors at the lowest level-—before any of them becomes
a problem or contaminates work at more detailed levels.

PDL makes changes easier. A few lines of PDL are easier to change than
a page of code. Would you rather change a line on a blueprint or rip out

a wall and nail in the two-by-fours somewhere else? The effects aren't as _
physically dramatic in software, but the principle of changing the product
when it's most malleable is the same. One of the keys to the success of

a project is to catch errors at the least-value stage, the stage at which the
least has been invested. Much less has been invested at the PDL stage

than after full coding, testing, and debugging, so it makes economic sense
to catch the errors early. '

PDL minimizes commenting effort. In the typical coding scenario, you
write the code and add comments afterward. In the PDL-to-code ap-
proach, the PDL statements become the comments, so it actually takes
more work to remove the comments than to leave them in.

PDL is easier to maintain than other forms of design documentation.
With other approaches, design is separated from the code, and when one
changes, the two fall out of agreement. With the PDL-to- code process,

the PDL statements become comments in the code. As long as the inline

comments are mamtamed the PDL's documentation of the design w1ll
be accurate.

4.3 Design the Routine

KEY POINT

4.3

CROSS-REFERENCE " -

For details on other aspects
of design, see Chapters 5
through 7.

CROSS-REFERENCE

For details on checking
prerequisites, see Chapter 3,
“Prerequisites to
Construction.”

CROSS-REFERENCE

For details on information
hiding, see Section 6.2,
“Information Hiding.”

As a tool for detailed design, PDL is hard to beat. Programmers tend to prefer
PDL to flawcharts. (Programmers tend to prefer everything to flawcharts.)
One survey found that programmers prefer PDL for the way it eases imple-
mentation in a programming language. for its ability to help them detect in-
sufficiently detailed designs, and for the ease of documentation and ease of
modification it provides (Ramsey. Atwood, and Van Doren 1983). PDL isn't the
only tool for detailed design, but PDL and the PDL-to-code process are useful
tools to have in your programmer’s toolbox. Try them. The next few sections
show you how.

Design the Routine

“The first step in-constructing a routine is to design it: Suppose that you want

to write a routine to output an error message depending on an error code, and
suppose that you call the routine RecordErrorMessage(). Here's the spec for
RecordErrorMessage():

RecordErroriessage() takes an error code as an input argument and out-
puts an error message corresponding to the code. It's responsible for
handling invalid codes. If the program is operating interactively,
RecordErrorMessage() prints the message to the user. If it’s operating in
batch mode, RecordErrorMessage() logs the message to a message file.
After outputting the message. RecordErrorMessage() returns a status vari-
able indicating whether it succeeded or failed.

The rest of the chapter uses this routine as a running example. The rest of this
section describes how to design the routine. The activities involved in design-
ing a routine are shown in Figure 4-2 on the next page.

Check the prerequisites. Before doing any work on the routine itself, check
to see that the job of the routine is well defined and fits cleanly into the
overall architecture. Check to be sure that the routine is actually called for, at
the very least indirectly, by the project’s requirements.

Define the problem the routine will solve. State the problem the routine will

- solve in enough detail to allow creation of the routine. If the architecture is .

sufficiently detailed, the job might already be done. The architecture should
at least indicate the following:

e The information the routine will hide

e Inputs to the routine

e Outputs from the routine, including any global variables affected

e How the routine will handle errors

Chapter 4: Steps in Building a Routine

CROSS-REFERENCE
For details on naming

routines, see Section 5.2,

58

“Good Routine Names."”

~

Define the problem the
routine will solve

Check the

prerequisites Name the routine

Reséarch the

appropriate algorithms Write the

detailed PDL

Decide how to
test the routine

Review the
PDL and the
data

Think about
_efficiency |

“Think-about -
the data

~ Figure 4-2. You 1l perform all of these steps as you design a routine but not

necessarily in any particular order.

Here’s how these concerns are addressed in the RecordErrorMessage() ex-
ample. The routine hides two facts: the error messages and the current pro-

- cessing method (interactive’ or batch). The input to the routine is an error

code. Two kinds of output are called for: The first is the error message; the
second is the status that RecordErrorMessage() returns to the calling routine.

Resolution of how the routine will handle errors doesn’t follow directly from
the problem statement. Suppose, for sake of the example, that the program's
convention is to report errors at the point of detection. In that case, the rou-
tine must report any errors that it is the first to detect and will assume that
others have already been reported. According to the spec, if it detects an er-
ror, it must also set the status-return variable to Failure.

Name the routine. Naming the routine might seem trivial, but good routine
names are one sign of a superior program, and they’re not easy to come up
with. In general, a routine should have a clear, unambiguous name. If you
have trouble creating a good name. that usually indicates that the purpose of
the routine isn't clear. A vague, wishy-washy name is like a politician on the
campaign trail. It sounds as if it’s saying something, but when you take a hard
look, you can't figure out what it means. If you can make the name clearer, do
so. If the wishy-washy name results from a wishy-washy architecture, pay at-
tention to the warning sign. Back up and improve the architecture.

In the example, RecordErrorMessage() is unambiguous. 1t is a good name.

4.3 Design the Routine

" CROSS-REFERENCE

For details on efficiency, see
Chapter 28, “Code-Tuning
Strategies,” and Chapter 29,
“Code-Tuning Techniques.”

Decide how to test the routine. As you're writing the routine, think about how
you can test it. This is useful for you when you do unit testing and for the
tester who tests your routine independently.

In the example, the input is simple, so you might plan to test RecordError-
Message() with all valid error codes and a variety of invalid codes.

Think about efficiency. Depending on your situation, you can address effi-
cieney in one of two ways. In the first situation, in the vast majority of sys-
tems, performance isn't critical.'In such a case, sce that the routine is well
modularized and readable so that you can improve it later if you need to. If
you have good modularization, you can replace a slow, high-level language
routine with a better algorithm or 4 fast assembler routine and you won'
affect any other routines.

In the second situation, in the minority of systems, performance is critical and
the architecture should indicate how much memory the routine is allowed to
use and how fast it should be. Design your routine so that it will meet its space
and speed goals. If either space or speed seems more critical. design so that
you trade space for speed or vice versa. Its acceptable dur ng initial construc-
tion of the routine to tune it enough to meet its space and speed budgets.

Aside from taking the approaches suggested for these two general situations,
it’s usually a waste of effort to work on efficiency at the level of individual rou-
tines. The big optimizations come from refining the top-level design. not the
individual routines. You generally use micro-optimizations only when the
top-level design turns out to be inadequate in some respect, and you won't
know that until the whole program is done. Don't waste time scraping for in-
cremental improvements until you know they’re needed.

Research the algorithms and data structures. The single biggest way to im-
prove both the quality of your code and your productivity is to reuse good
code. Many algorithms have already been invented, tested, discussed in the
trade literature, reviewed, and improved. Rather than spending your time in-
venting something when someone has already written a Ph.D. dissertation on
it, take a few minutes to look through an algorithms book to see what's
already available. If you use a predefined algorithm, be sure to adapt it cor-

- rectly to your programming language.

Write the PDL. You might not have much in writing after you finish the pre-
ceding steps. The main purpose of the steps is to establish a mental orienta-
tion that’s useful when you actually write the routine.

59

Chapter 4: Steps in Building a Routine

CROSS-REFERENCE

This discussion assumes
that good design techniques
are used to create the PDL

version of the routine. For

60

details on design, see
Chapter 7, “High-Level
Design in Construction."

With the preliminary steps completed, you can begin to write the routine as
high-level PDL. Go ahead and use your programming editor or your inte-
grated environment to write the PDL—the PDL will be used shortly as the
basis for programming-language code.

Start with the general and work toward something more specific. The most
general part of a routine is a header comment describing what the routine is
supposed to do, so first write a concise statement of the purpose of the rou-
tine. Writing the statement will help you clarify your understanding of the
routine. Trouble in writing the general comment is a warning that you need to
understand the routine’s role in the program better. In general, if it’s hard to
summarize the routine’s role, you should probably assume that something is
wrong. Here’s an example of a concise header comment describing a routine:

Example of a Header Comment for a Routine

This routine outputs an error message based on an error code
supplied by the calling routine. The way it outputs the message
depends on the current processing state, which it retrieves
on its own. It returns a variable indicating success or failure.

After you've written the general comment, ﬁll in high-level PDL for the rou-
tine. Here's the PDL for the example:

Example of PDL for a Routine

This routine outputs an error message based on an error code
supplied by the calling routine. The way it outputs the message
depends on the current processing state, which it retrieves
on its own. It returns a variable indicating success or failure.

set the default status
look up the message based on the error code
if the error code is valid
determine the processing method
if doing interactive processing
print the error message 1nteract1ve1y and declare success
else doing batch processing
if the batch message file opens properly
log the error message to the batch file, .
close the file, and declare success
else the message code is not valid
notify the user that an internal error has been detected

4.4 Code the Routine

CROSS-REFERENCE

For details on effective use
of data, see Chapters 8
through 12.

CROSS-REFERENCE
For details on review
techniques, see Chapter

4.4

Note that the PDL is written at a fairly high level. It certainly isn’t written in a
programming language. It expresses in precise English what the routine
needs to do. '

Think about the data. You can design the routine’s data at several different
points in the process. In the example, the data is simple and data manipula-
tion isn't a prominent part of the routine. If data manipulation is a prominent

part of the routine, it's worthwhile to think about the major pieces of data

before you think about the routine’s logic. Definitions of key data structures
are useful to have when you design the logic of a routine.

Check the PDL. Once you've written the PDL and designed the data, take a
minute to review the PDL you've written. Back away from it, and think about
how you would explain it to someone else.

- Ask someone else to look at it or listen to you explain it. You might think that

it's silly to have someone look at 11 lines of PDL, but you'll be surprised. PDL

can make your assumptions and high-level mistakes more obvious than

programming-language code does. People are also more willing to review a
few lines of PDL than they are to review 35 lines of C or Pascal.

Make sure you have an easy and comfortable understanding of what the rou-
tine does and how it does it. If you don’t understand it conceptually, at the
PDL level, what chance do you have of understanding it at the programming-
language level? And if you don't understand it, who else will?

Iterate. Try as many ideas as you can in PDL before you start coding. Once
you start coding, you get emotionally involved with your code and it becomes
harder to throw away a bad design and start over.

The general idea is to refine the routine as PDL until the PDL statements be-
come simple enough that you can fill in code below each statement and leave
the original PDL as documentation. Some of the PDL from your first attempt
might be high-level enough that you need to decompose it further. Be sure you
do decompose it further. If you're not sure how to code something, keep work-
ing with the PDL until you are sure. Keep refining and decomposing the PDL
until it seems like a waste of time to write it instead of the actual code.

‘Code the Routine

Once you've designed the routine, implement it. You can perform implemen-
tation steps in a nearly standard order, but feel free to vary them as you need
to. Figure 4-3 on the next page shows the steps in implementing a routine.

61

Chapter 4: Steps in Building a Routine

Here's the interface
statement.

. Here’s the header
comment that's been
turned into a Fascal-

_L 'H

style comment.

62

* Start with PDL

'

Write the routine declaration

Write the first and last statements and turn
the PDL into high-level comments

Repeat as needed Fill in the code below each comment

~Check the-code-informally- -

Clean up leftovers

Move to formal code checking

Figure 4-3. The steps taken to implement a routine.

Write the routine declaration. Write the routine interface statement-—the
procedure ‘or function declaration in Pascal, function declaration in C, sub-
routine definition in Fortran, or whatever your language calls for. Turn the
original header comment into a programming-language comment. Leave it in
position above the PDL you've already written. Here are the example routine’s
interface statement and header in Pascal:

Pascal Example’ of a Routine Interface and Header Added to PDL

[procedure RecordErrorMessage

(
ErrorCode: Errorode_t;
var Status: Status_t

™ { This routine outputs an error message based on an error code

supplied by the calling routine. The way it outputs the message -
depends on the current processing state, which it retrieves
on its own. It returns a variable indicating success or failure. }

(continued)

4.4 Code the Routine

set the default status
look up the message based on the error code
if the error code is.valid
determine the processing method
if doing interactive processing
print the error message interactively and declare success
else doing batch processing
if the batch message file opens properly
log the error message to the batch file,
~close the file, and declare success
else the message code is not valid
notify the user that an internal error has been detected

This is a good time to make notes about any interface assumptions. In this
case, the interface variables ErrorCode and Status are straightforward and
typed for their specific purposes; they don't contain any hidden assumptions.

Turn the PDL into high-level comments. Keep the ball rolling by writing the
first and last statements— begin and end in Pascal, { and /in C. Then turn the
PDL into comments. Here’s how it would look in the example:

Pascal Example of Writing the First and Last Statements Around PDL

procedure RecordErrorMessage
(.
ErrorCode: ErrorCode_t;
var Status: Status_t
): :

{ This routine outputs an error message based on an error code
supplied by the calling routine. The way- it outputs the message
depends on the current processing state, which it retrieves '

“on its own. It returns a variable indicating success or faﬂure }

begin
The PDL statements — { set the default status }
from here down have { look up the message based on the error code }
been turned into . { if the error code is valid } '
Fascal comments. _ { determine the processing method }
{ if doing interactive processing } :
{ print the error message 1nteract1ve1y and dec]are success }
{ else doing batch processing }. ; ,
{ if the batch message file opens properly }
{ log the error message to the batch file,
close the file, and declare success }
You can also ~ { else the message code is not valid } ; N
document the end of { notify the user that .an internal error has been detected }
the routine. — end: { RecordErrorMessage() }

63

Chapter 4: Steps in Building a Routine

At this point, the character of the routine is evident. The design work is com-
plete, and you can sense how the routine works even without seeing any
code. You should feel that converting the PDL to programming-language code
will be mechanical, natural, and easy. If you don't, continue designing in PDL
until the design feels solid.

Fill in the code below each comment. Fill in the code below each line of PDL
comment. The process is a lot like writing a term paper. First you write an
outline, and then you write a paragraph for each point in the outline. Each
PDL comment describes a block or paragraph of code. Like the lengths of
literary paragraphs, the lengths of code paragraphs vary according to the
thought being expressed. and the quality of the paragraphs depends on the
vividness and focus of the thoughts in them.

In the example, the first two PDL comments give rise to two lines of code:

‘ Pascal Example of Expressing POL Comments as Code
~procedure RecordErrorMessage

(

ErrorCode: ErrorCode_t;

var Status: Status_t

): '

{ This routine outputs an error message based on an error code
supplied by the calling routine. The way it outputs the message
depends on the current processing state, which it retrieves
on its own. It returns a variable indicating success or failure. }

begin
~ { set the default status }
Here's the code that's Status := Failure:
 been filled in. _
{ Yook up the message based on the error code }
Here's the new variable — LookupErrorMessage(ErrorCode, ErrorMessage);
ErrorMessage.

{ if the error code is valid }
{ determine the processing method }
{ if doing interactive processing }
{ print the error message interactively and declare success }
{ else doing batch processing }
{ if the batch message file opens properly }
{ log the error message to the batch file,
close the file, and declare success }
{ else the message code is not valid }
{ notify the user that an internal error has been detected }

end; { RecordErrorMessage())

e

4.4 Code the Floutine

Here's where the vari-
ables were declared
as they were needed.

The code for each —
comment hds been
filled in from here
down.

This is a start on the code. The variable ErrorMessage is used, so it needs to
be declared. If you were commenting after the fact, two lines of comments for
two lines of code would nearly always be overkill. In this approach, however,
it’s the semantic content of the comments that's important, not how many
lines of code they comment. The comments are already there, and they ex-
plain the intent of the code, so leave them in.

The code needs variable declarations, and the code below each of the re-
maining comments needs to be filled in. Here's the completed routine:

Pascal Example of a Complete Routine Created with the PDL-to-Code Process

procedure RecordErrorMessage
ErrorCode: ErrorCode_t;

var Status: Status_t

);

{ This routine outputs an error message based on an error code
supplied by the calling routine. The way it outputs the message
depends on the current processing state, which it retrieves
on its own. It returns a variable indicating success or failure. }

var
ProcessingMethod: ProcessingMethod_t;
ErrorMessage: Message_t;
FileStatus: - Status_t;

begin

{ set the default status }
Status := Failure;

{ Took up the message based-on the error code }
LookupErrorMessage(ErrorCode, ErrorMessage);

{ if the error code is valid }
if_('ErrorMessage.ValidCode) then begin

{ determine the processing method }
ProcessingMethod := CurrentProcessingMethod;

{ if doing interactive processiﬁg }
if (ProcessingMethod = Interactive) then begin

{ print the error message interactively and declare:
PrintInteractiveMessage(ErrorMéssage.Text);
Status := Success A

end

Chapter 4: Steps in Building a Routine

66

{ else doing batch processing }
~else if (ProcessingMethod = Batch) then begin

{ if the batch message file opens properly }
FileStatus := OpenMessageFile;
if (FileStatus = Success) then begin

{ Tog the error message to the batch file, close the file,
and declare success } '
LogBatchMessage(ErrorMessage.Text):
CloseMessageFile;
Status := Success
end { if }
end { else }
end '

{ else _the message code is not valid} . . -
else begin

{ notify the user that an internal error has been detected }
PrintInteractiveMessage('Internal Error: Invalid error code',
" in RecordErrorMessage()')
end ‘

end; { RecordErrorMessage() }

Each comment has given rise to one or more lines of code. Each block of code
forms a complete thought based on the comment. The comments have been
retained to provide a higher-level explanation of the code. All the variables
that have been used have been declared at the top of the routine.

Now look again at the spec on page 57 and the initial PDL on page 60. The
original 5-sentence spec expanded to 12 lines of PDL, which in turn ex-
panded into a page-long routine. Even though the spec was detailed, creation
of the routine required substantial design work in PDL and code. That low-
level design is one reason why “coding” is a nontrivial task and why the sub-
ject of this book is important. '

Check the code informally. Mentally test each block of code as you fill it in
below its comment. Try to think of what it would take to break that block. and
then prove to yourself that it won't happen.

Once you have an implementation of the routine, stop to check it for mistakes.
You should already have checked it when you wrote it in PDL, but sometimes an
important problem doesn’t appear until the routine is implemented.

4.4 Code the Routine

CROSS-REFERENCE

For details on checking

for errors in architecture
and requirements, see
Chapter 3, “Prerequisites 10
Construction.”

A problem might not appear until coding for several reasons. An error in the
PDL might become more apparent in the detailed implementation logic. A
design that looks elegant in PDL might become clumsy in the implementation
language. Working with the detailed implementation might disclose an error
in the architecture or the requirements analysis. Finally, the code might have
an old-fashioned, mongrel coding error—nobody's pcrﬂ,ct' For all these
reasons, review the code before you move on.

Clean up the leftovers. When you've finished checking your code for prob-
lems, check it for the general characteristics described throughout this book.
You can take several cleanup steps to make sure that the routine’s quality is up
to your standards:

e Check the routine’s interface. Make sure that all input and output data is
accounted for and that all parameters are used. For more details, see Sec-
tion 5.7, “How to Use Routine Parameters.”

e Check for general design quality. Make sure the routine does one thmg
and does it well, that it's loosely coupled to other routines, and that it’s
designed defensively. For details. see Chapter 3, “Characteristics of High-
Quality Routines.”

e Check the routine’s data. Check for inaccurate variable names, unused
data, undeclared data, and so on. For details. see the chapters on using
data, Chapters 8 through 12.

e Check the routine’s control structures. Check for off-by-one errors, in-
finite loops, and improper nesting. For details, see the chapters on using
control structures, Chapters 13 through 17.

e Check the routine’s layout. Make sure you've used white space to clarify
the logical structure of the routine, expressions, and parameter lists. For
details, see Chapter 18, “Layout and Style.”

e Check the routine’s documentation. Make sure the PDL that was trans-

~ lated into comments is still accurate. Check for algorithm descriptions, for
documentation on interface assumptions and nonobvious dependencies,
for justification of unclear coding practices, and so on. For details, see
Chapter 19, “Self-Documenting Code.”

Repeat steps as needed. If the quality of the routine is poor, back up to the
PDL. High-quality programming is an iterative process, so don’t hesitate to
loop through the design and implementation activities again.

67

Chapter 4: Steps in Building a Routine

KEY POINT

CROSS-REFERENCE

For details on review tech-

niques, see Chapter 24,
“Reviews.”

Mk

HARD DATA

Check the Code Formally

After designing and implementing the routine, the third big step in construct-
ing it is checking to be sure that what you've constructed is correct. Didn't the
informal checking and cleaning up of leftovers verify the correctness of the
code? Yes, partially, but not completely, and any errors you miss at this stage
won't be found until later testing. They’re more expensive to find and correct
then, so you should find all that you can at this stage.

Mentally check the routine for errors. The first formal check of a routine is
mental. The clean-up and informal-checking steps mentioned earlier are two
kinds of mental checks. Another is executing each path mentally. Mentally
executing a routine is difficult, and that difficulty is one reason to keep your
routines small. Make sure that you check nominal paths and endpoints and

all exception conditions. Do this both by yourself, which is called “desk

”

checking,” and with one or more peers, which is called a “peer review,” a
“walkthrough,” or an “inspection,” depending on how you do it.

One of the biggest differences between hobbyists and professional program-
mers is the difference that grows out of moving from superstition into under-
standing. The word “superstition” in this context doesn't refer to a program
that gives you the creeps or generates extra errors when the moon is full. It

means substituting feelings about the code for understanding. If you often

find yourself suspecting that the compiler or the hardware made an error,
you're still in the realm of superstition. Only about 5 percent of all errors are
hardware, compiler, or operating-system errors (Brown and Sampson 1973,
Ostrand and Weyuker 1984). Programmers who have moved into the realm of
understanding always suspect their own work first because they know that
they cause 95 percent of errors. Understand the role of each line of code and
why it's needed. Nothing is ever right just because it seems to work. If you
don’t know why it works. it probably doesn’t—you just don't know it yet.

Bottom line: A working routine isn’t enough. If you don't know why it works,
study it, discuss it, and experiment with alternative designs until you do.

Compile the routine. After reviewing the routine, compile it. It might seem in-
efficient to wait this long to compile since the code was completed several
pages ago. Admittedly, you might have saved some work by compiling the
routine earlier and letting the computer check for undeclared variables, nam-
ing conflicts; and so on. o ‘

You'll benefit in several ways, however, by not compiling until late in the pro-
cess. The main reason is that when you compile new code, an internal stop-
watch starts ticking. After the first compile, you step up the pressure: Get it

4.5 Check the Code-Formally

CROSS-REFERENCE

For details, see Chapter 25,
“Unit Testing.” Also see
“Building Scaffolding to Test
Individual Routines” in
Section 25.5.

CROSS-REFERENCE
For details, see Chapter 26,
“Debugging.”

right with Just One More Compile. The “Just One More Compile” syndrome
leads to hasty, error-prone changes that take more time in the long run. Avoid
the rush to completion by not compiling until you've convinced yourself that
the routine is right.

The point of this book is to show how to rise above the cycle of hacking
something together and running it to see if it works. Compiling before you're
sure your program works is often a symptom of the hacker mind-set. If you're
not caught in the hacking-and-compiling cycle, compile when you feel it's
appropriate to.

Here are some guidelines for getting the most out of compiling your routine:

e Set the compiler’s warning level to the pickiest level possible. You can
catch an amazing number of subtle errors simply by allowing the com-
piler to detect them.

e Eliminate the causes of all compiler errors and warnings. Pay attention to
what the compiler tells you about your code. A lot of warnings often in-
dicates low-quality code, and you should try to understand each warning
you get. In practice, warnings you've seen again and again have one of
two possible effects: You ignore them and they camouflage other, more
important warnings, or they become annoying, like Chinese water tor-
ture. It's usually safer and less painful to rewrite the code to solve the
underlying problem and eliminate the warnings.

Use the computer to check the routine for errors. Once the routine compiles,
put it into the debugger and step through each line of code. Make sure each
line executes as you expect it to. You <an find many errors by followmg this
simple practice.

After stepping through the code in the debugger, test it using the test cases
you planned while you were developing the routine. You might have to de-
velop scaffolding to support your test cases—code that is used to support rou-
tines while they’re tested and isn't included in the final product. Scaffolding
can be a test-harness routine that calls your routine with test data, or it can be
stubs called by your routine.

Remove errors from the routine. Once an error has been detected, it has to be
removed. If the routine you're developing is buggy at this point, chances are
good that it will stay buggy. If you find that a routine is unusually buggy, start
over. Don't patch it. Rewrite it. Patches usually indicate incomplete under-
standing and guarantee errors both now and later. Creating an entirely new
design for a buggy routine pays off. Few things are more satisfying than
rewriting a problematic routine and never finding another error in it.

Chapter 4: Steps in Building a Routine

CROSS-REFERENCE - Constructing a Routine
The point of this list is

to check whether you fol-
lowed a good set of steps
to create a routine. For a
checklist that focuses on
the quality of the routine
itself, see the “High-Quality
Routines™ checklist in
Chapter 5, page 113.

Have you checked that the prerequisites have been satisfied?

Have you defined the problem that the routine will solve?

Is the architecture clear enough to give your routine a good name?
Have you thought about how to test the routine?

Have you thought about efficiency mainly in terms of good modulariza-
tion or in terms of meeting space and speed budgets?

Have you checked reference books for helpful algorithms?
Have you desxgned the routme using detailed PDL?
Have you thought about the data before the logxc if necessary?

Have you mentally checked the PDL? Is it easy to understand?

GDDDD OCOD0OCCO

Have you paid attention to warnings that would send you back to
architecture (use of global data, operations that seem better sunted to
another routine, and so on)?

Did you use the PDL-to-code process, using PDL as a basis for coding
and converting the original PDL to comments?

Did you translate the PDL to code accurately?

Did you document assumptions as you made them?

OCoQ O

Have you chosen the best of several design attempts, rather than merely
stopping after your first attempt?

J Do you thoroughly understand your code? Is it easy to understand?

Key Points

) ‘\Writi_ng good PDL calls for using understandable English, avoiding fea-
tures specific to a single programming language, and writing at the level
of intent—describing what the design does rather than how it will do it.

e The PDL-to-code process is a useful tool for detailed design and makes
coding easy. PDL translates directly into comments, ensuring that the
comments are accurate and useful.

e You should check your work at each step and encourage others to check
it too. That way, you'll catch mistakes at the least expensive level, when
you've invested the least amount of effort.

