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FORCES

All of us experience forces—all the pushes, pulls, tugs, and shoves of everyday life.
Some of these forces are welcome—the up-down-sideways jostles of a roller coaster ride,
and some are unwelcome—the thud and bump when two cars roll into each other. Forces

operate can openers, automobiles, ski lifts and airplanes, and are what buildings, bridges,

and ships must stand up to.

Engineers must consider how forces affect the structures, buildings, devices, and
machines they design, manufacture and maintain. For example, a civil engineer” designing
a dam would think about the water pushing against the dam and would ask “will the steel
tie-downs to the bedrock be strong enough?”’ A mechanical engineer’ designing the
landing gear for an éirplane would think about the forces applied during landing and ask

- “will the size of the landing gear forging be sufficient to prevent failure after repeated

landings?”

You must consider forces if you propped a ladder against a building or tree to wash a
window or rescue a kitten; if the angle of the ladder relative to the ground is too steep the
ladder will tend to tip; if not steep enough its foot will tend to slide. The question that you
might ask is, “will I be able to get just the right position for the ladder so that I can safely ’

accomplish my task?”

This chapter looks at forces—what they are, how to categorize them, and how to represent
them. Learning how to identify and represent forces is the first step in developing the
thinking and analysis skills that will enable you to evaluate systems.

*Civil engineers are responsible for planning, designing, and constructing the infrastructure
of our civilization. This includes buildings, bridges, power plants, transportation systems,
water supply and treatments systems, and much more. The civil engineer is called upon to
apply physical (and, in some cases, chemical and biological) principles, assess social and
environmental impact, and evaluate the costs and benefits of infrastructure projects.

T Mechanical engineers work in a variety of industries, from transportation to product
manufacturing to energy generation to consumer products to applied research. This work
involves the design, manufacture, and maintenance of products or systems to meet human -
needs. The mechanical engineer is called upon to use knowledge of physical principles and
their application, an understanding of existing products, and an imagination of what

products might be.
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4.1 WHAT ARE FORCES?

The term force is used to describe any interaction between a system and the rest of the
world that tends to affect the state of motion of the system. The magnitude of the force is
related to the magnitude of the effect. Forces cannot be seen and in a sense don’t

exist—but are a rather useful concept.

Forces are specified in newtons (N) in SI units and in pounds (Ibs) in U.S. Customary
units. The conversion between the two systems is 4.4482 newtons = 1 pound, 1
newton= 0.2248 pound. Forces range from very small (e.g., 0.000 000 5 N
gravitational pull exerted by Mars on an earth-bound engineering student) to very large

(e.g., 100 tons = 889 660 N weight of a Caterpillar™ D11N tractor). In addition, forces

~are-vector quantities;-this-means-that-they--have -both-magnitude (size)-and direction . .

associated with them. Graphically, a force is represented by an arrow with a head and a
tail (Figure 4.1). The direction from the tail of the arfow to its head represents the
direction of the force, and the length of the arrow is commonly drawn proportional to the
magnitude of the force. The magnitude of the force (if known) is written next to the
arrow. The line along which the force acts is called the line of action of the force.

Physicists have traditionally identified foﬁr basic forces: gravitational, electromagnetic,
weak, and strong. The relative strengths of these forces are strong 1, ¢glectromagnetic- 107,
weak 107, and gravitational 10*. Generally, gravitational forces are of concem to
engineers considering equilibrium of systems. Also of concemn are electromagnetic forces

that result from the interaction of electrical and magnetic fields at the atomic and subatomic

levels—we will refer to these as contact and bonding forces. The strong force
(which keeps every atomic nucleus intact) and the weak force (which is a factor only in
radioactive decay) are significant only at the subatomic level and will not be considered

further here.
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4.2 Gravitational Forces

The force of gravity is always present. Itis the mutual atiraction between any two bodies
anywhere in the universe. The magnitude of the gravitational force between any two
bodies is directly proportional to the product of their masses and inversely proportional to
square of the distance between them. The umiversal gravitational constant G
changes the proportionality to an equality. In other words:
Gm;m '
R=— @.1)
where
F,is the magnitude of the gravitational force (in Newtons);
m, and m, are the masses of the two bodies (in kilograms);

r is the distance between thelr centers of mass (m meters) as shown in Flgure

©4.2);
G is the universal gravitational constant (G=6.673x10™" m’/kg-s> in SI) (footnote

on English units)

The direction of the gravitational force of m, acting on m, is from m, towards m,.
Similarly, the direction of the gravitational force of m, acting on m, is from m, towards m,

(see Figure 4.2).

Because the mass of the earth is at least 20 orders of magnitude greater than the mass of
most objects on the planet, the gravitational attraction between any two objects on the
planet is negligible relative to the gravitational attraction between either object and the
earth. For example,'the magnitude of the gravitational force between two average sized
apples is a mere 0.000 000 000 064 6 newtons (6.46x10""" newtons)¥, compared with the
0.98 N gravitational force between one apple and the earth? (Figure 4.3). Therefore,
the gravitational force exerted by the earth is an important force acting on objects near the

earth’s surface.

1 This force was found using Equation 4.1, with my=m, =mass of apple =0.1 kg, ,
r=radius of apple+radius of apple=0.050 m +0.050 m =0.100 m

§ This force was found using Equation 4.1, with m;=mass of apple=0.1kg, m,=mass of
earth=5.976x10* kg, r=radius of earth+radius of apple=6.371x10°m +0.05m =6.371x10°

m
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We can simplify Equation 4.1 by realizing that, (a) the mass of the earth is constant, and
(b) the distance between the center of mass of the earth and the center of mass of the object
can be taken to be the earth’s average radius for any object either on the earth’s surface or
not far above the surface. In other words, once we arbitrarily say that m, in Equation 4.1
is the mass of the earth, we can group our three constants---G, m,, and r’---into a new
constant g. Therefore, Equation 4.1 can be rewritten as:

Grmym,

._F;z= 2 = m,(

Gy = mg (4.2)

2

Gm . o ' . :
where g=-—+ and is called the gravitational constant, and m (=m,) is the mass i
r

kilograms of an object. By substituting the values of G, m; for the earth (=5.976x10*

" kg), and the mean radius of the earth (=6.371x10° m) ** into Equationi 4.2,”we find that™ =

near the earth the magnitude of the force of gravity (in newtons) on any object of mass m

(in kilograms) is:
F,=m 9.807 (m/s?) | - (43A)

The magnitude of gravity force in Equation 4.3A is given a special label—the object’s
weight on earth (W,,,). W,,,,, is the magnitude of the force of gravity exerted by earth
on an object, and is the product of the mass of the object and the gravitational constant g

(= 9.807 m/s%= 32.2 fi/s” for the earth):
Weight on earth=W,, ,= F,= m 9.807 (m/s’) (4.3B)

Occasionally you may observe mass and force units seemingly used to mean the same
thing. An example is the label on the candy bar sold in the U.S. as shown in Figure
4.4, where the net weight is given as 104.9 grams and 3.70 ounces (=0.231 pound).
“Gram” is a mass unit and “ounce” is a force unit. M&M*Mars™ (the maker of Snickers)
assumes that its candy will be consumed on the earth and is saying “the gravitational force

** The earth is not a perfect sphere. It is approximately an ellipsoid, flattened at the poles
and bulging at the equator. Its equatorial radius is greater than its polar radius by 21 km
(reference to RHK). What this means is that gravitational force is slightly greater at the

poles (g=9.835 m/s?) than at the equator (9.78 m/s?). For most engineering work, this

difference is insignificant and we use a value of “g” based on the mean radius of the earth.
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- towards the center of mass-of the-earth*-(Figure -4.5B). -

experienced by this 104.9 grams of candy is 3.70 ounces (=1.02 newtons) when they

candy is near the earth’s surface.”

Weight is actually a body force. This means that the gravitational force exists between
every atom in the object and every atom in the earth (Figure 4.5A). There will be times
when this distributed nature of the gravitational force needs to be considered in
engineering practice. Formal procedures for incorporating the distributed nature of an
object’s weight into engineering calculations are addressed in Chapter 8. There will be
other times (far more common in the types of problems included in this text and in
engineering practice more generally) when it will be sufficient to lump all the distributed
gravitational forces acting on an object into a single force. This single force, which
represents the weight of the object, is directed from the center of mass of the object

Sample Probleni #1 Gravity, Weight and Mass

4.3 Contact and Bonding Forces

Contact and bonding forces result from electric and magnetic interactions that are
responsible for the bonding of atoms and the structure of solids. Under this general
heading is force that prevents one solid object from moving through another solid object
(normal contact force), force that results when one solid object slides or tends to slide
across another (friction force), force that results from the interaction of a solid object and a
fluid (fluid contact pressure), and force that results when molecules within a solid object
are. pulled relative to one another (tension force), pushed relative to one another
(compression force), shifted relative to one another (shear force).

Normal contact force—Whenever two solid objects are in contact with each other, each
experiences a force that is. perpendicular to their two contacting surfaces called normal
contact force. For example, normal contact force acts on a piano key where a fingertip
presses downward on it, and an equal and opposite normal contact force acts on the
fingertip where the key presses upward on it Figure 4.6A). Similarly, a normal contact
force acts on the table where this book sits, and an equal and opposite normal contact
force acts on the book where table pushes back (this is Newton’s Third Law). Normal

11 The procedure for finding the center of mass i discussed in Chapter 8.
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contact force is directed so as to bring the two solids together. What this means in practical
terms is that a clean fingertip contacting a piano key can push but can't pull on the key, as

illustrated in Figure 4.6B.

Friction Force— If you attempt to slide a solid object over another solid object, the motion
is resisted by interactions between the surfaces of the two objects. This resistance is
friction force and is oriented parallel to their two contacting surfaces in a direction
opposite the direction of (pending) motion. For example, if you push on an edge of this
book as it rests on a table, as in Figure 4.7, the friction force exerted by the table on the
book is in the direction opposite to the sliding direction. An equal and opposite friction
force acts on the table. Friction force is related to and limited by normal contact force and
the characteristics (e.g., smoothness) of the objects in contact. Normal contact force must

--be present for friction force to-be present (but not visa versa).

Fluid contact pressure— As fluid presses on or moves past a solid object it wets the
surface of the solid and applies a force to the surface; we call this force the fluid contact

pressure. (Fluids is the general term for gases and liquids — substances that change
shape to fill a volume.) You have probably experienced this sort of force if you have ever
put your hand out of the window of a moving car---there is a definite force pushing
backwards on your hand. When we refer to the interaction between a fluid and a solid,
we will typically be talking in terms of the fluid contact pressure. The dimensions of
pressure are force/area, and so pressure units are N/m? in the SI system, Ibs/in’ or psi in

the U.S. Customary system.

The fluid contact pressures that engineers work with may be very small (e.g., 1000 N/mz',
water pressure on the bottom of a full tea kettle), of medium size (e.g., 500,000 N/m? air
pressure in a bicycle tire), or very large (e.g., 3,000,000 N/m? air pressure in a scuba

tank or fluid pressure in a hydraulic brake system).

Tension Force—A cable attached to a solid object and pulled taut is said to be under
tension. For example, consider a cable holding up a crate, as in Figure 4.8. Tension
in the cable is transmitted along the cable. Microscopically, each atom of the cable “pulls”
on the atom next to it and is in turn pulled by that atom, according to Newton’s third law.
In this way the force pulling on one end of the cable is transmitted to the object on the
other end. If we were to cut the cable at any point and insert a spring scale at the cut ends,
the spring scale would read the tension force F,,,, directly. Tension forces in systems
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may be very small (e.g., 0.001 N, spider swinging on its web) or very large (e.g.,
1,000,000 N tension in suspension cables of Bay bridge?? need to verify this number).

Compression Force—When the atoms that make up a solid object are pushéd closer
together, they experience compressive force. For example, consider a vertical column
holding up a wooden deck, as in Figure 4.9. Compression is transmitted along the
column as the deck pushes down from the top and the support pillar pushes up from the
bottom. As with the cable in tension described above, successive atoms of the column act
on each other. In the case of the column in compression, successive atoms “push” on
each other with compression force F,oppression- Compression forces in systems may be -
very small (e.g., 0.5 N compression applied by household tweezers) to very large (e.g.,
1,000,000 N compression applied during sheet metal stamping).

Shear Force—When the atoms that make up a solid object are shifted relative to one

another, they experience shear force. For example, consider a rock climber standing on

the small rock toe-hold (Figure 4.10). At the interface between the toe-hold and the -

larger rock mass, shear force is transmitted. Microscopically, atoms on the right of the

interface shift downward (ever so slightly) relative to the atoms on the left. This shift o~
& / results in an upward shear force acting on the toe-hold, and an equal and opposite shear /
force on the larger rock mass. Notice that the shear force is parallel to the interface.

Summary---Forces come in a wide variety of sizes and types (gravity, normal contact,
friction, fluid contact, tension, compression, shear). In performing equilibrium analysis,
we look at a physical situation and identify the types of forces present, as discussed in the

next section.

Sample Problem #2 Identifying Types of Forces

4.4 CARRYING OUT ANALYSIS

Which forces are important‘—zooming-in

The ability to identify the relevant portion of the world and the forces acting on that
portion is key to being able to address questions concerning structural integrity and system
performance. We will refer to the portion as the system and to the forces acting ON the
system as external forces. External forces may be any of the types discussed above—
gravity, normal contact, friction, fluid contact pressure, tension, or compression.
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External forces are to be contrasted with internal forces, which exist within the system
in equal and opposite pairs and are therefore self-canceling (this is Newton’s Third Law).
For example, if two stacked books resting on a table are considered to be the system
(Figure 4.11A), the extenal forces are the weights of the two books (i.e., the
gravitational force exerted by the earth on each book) and the normal contact force that the
table exerts on the bottom book. The normal contact forces between the two books (the
push of the lower book on the upper book arid the equal and opposite push of the upper
book on the lower book) are internal forces. Because they are equal in magnitude (size)
and opposite in direction, they exactly cancel each other. If, on the other hand, we define

- our system to be the upper book, the external forces acting on the system are the weight of

the upper book and the normal contact force of the lower book on the upper book (Figure

'"“Zt_;‘l'l‘B‘)'.’""FinTﬂTy,'*’if‘We*d‘efiue*our*systenrtowbethc Jower-book;-the-external-forees-acting- - - -

on this system are the weight of the lower book, and the normal contact forces of the
upper book and table acting on the lower book (Figure 4.11C). (N otice that Figures
4.11B and 4.10C combine to form the two-book system in Figure 4.11A.)

The presence of external and internal forces is further illustrated in the following example:

Consider a person standing on a ladder that is leaned against a building. The ladder

consists of two vertical stringers and eight horizontal rungs that run between the stringers
(Figure 4.12). Normal contact and friction forces exist between the’ ladder and the
building and between the ladder and the ground. Normal contact and friction forces are
also present between the person’s hands and feet and the ladder rungs. In addition, there
is the gravitational force (weight) of the person and ladder. Do we need to consider all of
these forces? The answer depends on what we want to know about the situation. For

example:

« Case 1.1: If we want to know whether the feet of the ladder will begin sliding away from
the building (not a desirable state of affairs!), we could take the system to be the person '
and the ladder. The external forces acting on this system are the weights of the person
and ladder and the normal contact and friction forces that the wall and ground exert on
the ladder (Figure 4.13). The normal contact and friction forces between the person
arid the ladder are internal to our system.

« Case 1.2: Alternately, we could take the ladder alone as our system in determining

“whether the ladder will slide (Figure 4.14). The external forces acting on this system
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are the weight of the ladder, the normal contact and friction forces that the person’s
hands and feet exert on the rungs, and the normal contact and friction forces that the wall

and ground exert on the ladder.
« Case 1.3: If we want to know whether the connections between a rung and the stringers

are strong enough, we would take the system to be the rung on which the person is
standing. The external forces exerted on this rung are the normal contact and friction
forces exerted by the person’s feet and tension, compression, and shear forces that the
stringers apply to the rung (see Figure 4.15). ‘
« Case 1.4: If we want to know about the forces exerted on the person’s lower back, we
could begin by defining the system as the person (Case 1.4A). The external forces
exerted on this system are the weight of the person and the normal contact and friction
forces exerted by the ladder on the person’s hands and feet (Figure 4.16A). These
~external forces afe ifi contrast to forces internal to the person: tension forces created by — -
muscles and normal contact between bones. An analysis of this system would be
followed by an analysis of another system---the upper torso of the person (Case 1.4B).
The external forces exerted on this system (shown in Figure 4.16B) are the weight of
the upper torso, the normal contact and friction forces exerted by the ladder on the
person’s hands, AND normal contact and tension forces exerted by the lower torso on ' —
( / the upper torso. It is these latter external forces that are carried by the lower back. This b
case illustrates that sometimes we may need to take an iterative approach to analysis,
first looking at one system, then redefining the system as a portion of the original

system.

" The external and internal fbrces involved with each of these cases are summarized in Table
4.1. Notice that the classification of a force as external or internal depends on the

definition of the system or object that we are considering.
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In the person-ladder example, we zoomed-in and isolated a portion of the world that is
relevant to the particular question we are asking. We called this portion the system. We
then identified the forces acting on that system and called these the external forces. It will
usually be convenient to define the system so that the forces we are trying to find are
external forces. Internal forces come in pairs of equal magnitude and opposite direction
and are self-canceling. Therefore, we do not consider them when analyzihg the system.
Notice that as we went from Case 1.1 to 1.4, forces that were internal to some systems
became external to others. Whether a force is external or internal depends on the system

of interest.

General Steps for Analygj_s

The process of zooming-in to define a system, then identifying external forces acting on

~ that system (as we did above) is critical in evaluating the performance of a systém. This

process is more formally presented in the FIND, GIVEN and ASSUME steps of the Table
1.1 Analysis Procedure.

Zooming-in and identifying extemal forces then leads to the DRAW step on the procedure.
The drawing we create is called a freebody diagram---“free” because the boundary cuts
the system off from the world around it, “body” because we have defined a specific
system to focus on, and “diagram’ to emphasize the importance of a visual representation.
A freebody diagram shows the external forces that act on the system as vectors (either as
resultant forces or as components). Each force is shown on the diagram at its point of

" application; this is the point on the system where the force acts. Figures 4.13-4.16 are

examples of freebody diagrams. We will have a lot more to say about creating freebody

diagrams in Chapter 6.

Sample Problem #3 Practice in applying the analysis steps from Chapter 1
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4.5 MAGNITUDE AND DIRECTION DEFINE A FORCE

Working with freebody diagrams involves representing and manipulating forces---
therefore we now consider how to formally work with the vector quantity of force.
Although this section and the next are framed in terms of force, our comments on vectors

are equally valid for any vector quantity.

Consider that you are asked to remove a tent stake from the ground, as shown in Figure

4.17A. How would you pull on the rope?

It is likely that you would pull so that the rope was aligned with the axis of the stake with
somewhere between 100-150 N of force. We can represent the pull force graphically

* (Figure 4.17B). In addition, we can represent the force-mathematically;-as- discussed- -~ - -

below.

Magnitude-Angle Representations—Consider a force F of known magnitude, where the
magnitude is the size of the force and is specified as F.(we use italics to denote the

magnitude of a vector throughout this book).

The direction of this force can be specified by its angular orientation relative to a set of
right-handed reference axes. Call these angles 6., Oy, and 0,, from the x, y and z axes,
respectively, as illustrated in Figure 4.18, and refer to them as the direction cosine
angles. They can be specified either in degrees or in radians and can generally be found
based on the geometry of the situation. For example, in Figure 4.19 we are given

~ dimensions related to the cable force that allow us to define the coordinates of two points

(A and B) on the force’s line of action. Based on these coordinates, we find that:

0, =cos™ [(x,-x1)/L] _
8y =cos™[(y2-y1) /L] (4.4)
0, =cos[(zz-zy) /L] .

where L =[ (Xp-X0)*+ (Y2-¥1) + (2-21) 1%

When working with direction cosine angies consider that:
1) The angles 8,, 6,, and 6, are not independent of one another. They are related by

9/18/01 (Sheppard, copyright 2000)(Version 1.0) 4-13A
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[(cos B8,)*+( cos 6,)+( cos 6,)"]’=1 (4.5)
(this expression was proved in Chapter 1; need specific Chapter 1 reference here).

2) If the force is in the plane of two of the reference axes, one of the angles is 90
degrees. For example, if a force is in the xy plane, the angle 6, between the z axis and
the force is 90 degrees. We call a force in the plane of two of the reference axes a

~ planar or two-dimensional (2D) force; otherwise it is called a non-planar or
thi'ee-dimensional (3D) force. For planar forces, Equation (4.5) simplifies to:

[(cos 6,)*+( cos 8,)]>°=1 (4.6)

" since 8, =90 degrees and therefore cos €,20.

Examples of planar and non-planaf forces specified with direction cosine angles are
shown in Figures 4.20 and 4.21, respectively.

3) The direction cosine angles are always defined as positive angles between zero and
360 degrees. Examples of their specification are given in Figure 4.20 and 4.21.

An alternative to the direction cosine angle approach described is to use two angles
(0,B), as illustrated in Figure 4.22. The angle o defines the sweep from the x axis to

the projection of F onto the xy plane (you can think of the projection as the “shadow” that
F that would be cast on the xy plane, shown as a faint dashed line in Figure 4.22).
The angle B defines the sweep off the xy plane to F. The angles (o, B) can be specified

- either in degrees or in radians.

When workmg with (o) consider that:
1) If the force is in the xy plane (therefore itis a planar force), B is zero degrees, Figure

4.23.
2) The angle o is a positive angle between zero and 360 degrees if defined counter-

clockwise relative to the x axis; otherwise it is negative. The angle P is positive if the
sweep off the xy plane is towards the +z axis, and is negative is the sweep is towards
the —z axis, as shown in Figures 4.23, respectively. '

3) The angles (o) and the direction cosine angles (6,, 8,, 8,) are related to one another

by (proof in a footnote missing):
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(Figure 4.24A). In other words:

8, = cos[cos o cos B]";
6, = cos[sin o cos B (4.7A)
8, = cos[sin B]

or
B= sin™ [cos(8,)] "(4.7B)
o= tan™ [cos(By)/cos (6,)]

Rectangular Component Representation—Another way of representing the magnitude and

direction of a force F is to specify its three rectangular components vectors (F,, F,
F,) relative to a set of reference axes. This is the same thing as specifying the “hike” you
would take in x,-y, and the z directions to get from the tail to the head of the force vector

F=F,+F, +F, ' (4.8A)

This equation can be rewritten in terms of the unit vectors i, j and k (reference to Chapter

1 discussion on unit vectors) as:
F=Fi+F j+Fk (4.8B)

where F,, F, and F, are the projections of F onto the x, y and z axes, respectively. We
refer to the projections F,, F, and F, as the scalar components of F. Each scalar
component tells us the magnitude of F in a particular direction and whether we are
“hiking” in the positive or negative direction (so unlike the concept of magnitude, which
has no sign associated with it, a scalar component does have a si gn associated with it). '

If wé know the direction cosine angles (8 ,, Gy, 0,) and magnitude (F) of F, we can write

the scalar components as:

F,= F cos 6, A)
F,=F cos 6, (B) 4.9)
F = F cos 0, (&3}

See Figure 4.24B.
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We now write F in terms of its component vectors by substituting from Equat1on 4.9 into

Equation 4.8B:

F = Fcos 0,i + F cos 0,j + F cos 0,k (4.10A)

which can be rearranged as:
F =F (cos 6,i + cos 0,j + cos 8,k) (4.10B)

The term (cos 64i + cos 8, +Fcos 6,k) in this expression defines a unit vector (reference
to Chapter 1 on direction cosine), which we will call n. It is aligned with the line of action
of F. Therefore Equation 4.10B can be rewritten in terms of n as:

F =F (cos 6, +cos 0,j + cos ,k)=Fn (4.11)

The discussion up to now on rectangular component representation has been in terms of
decomposing F into its component vectors F,, F,, and F,. Just as common in énalysis is
the need to combine the component vectors F, Fy, and F, into their resultant force F.
The scalar components can be combined to determine the magnitude of the resultant (F):

F=(F2+F *+R2)* 4.12)

which is found by noting in Figure 4.25 that F=(F’’+F2)", where F’=(F +F %"
Therefore, F the magnitude of F is equal to the positive square root of the sum of the

squares of its scalar components.

It is also common in analysis to use the scalar components F,, F, and F, of a force to find
the direction cosines of the line of action of the force. Rearranging the expressions in 4.9

we find:

cos 6, =F/ F
cos 8, =F/ F (4.13)
cos 0, =F/ F

where F is given in Equation 4.12. The relationships given in Equations 4.13 are shown

_graphically in Figure 4.26.
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The discussion of rectangular representation of forces has been in terms of non-planar

forces. If, on the other hand, a force is planar, Equations 4.8B and 4.10A can be
simplified. For example, if the force is contained in the xy plane, F,=0, 8, =90 degrees,

and cos 0, =0. Therefore, Equations 4.8B and 4.10A simplify to

F=Fi+Fj (4.14A)
(planar version of 4.8B)

F=  FcosB,i+Fcosb, j (4.14B)
(planar version of 4.10A)

“as illustrated in Figure 4.27.

You'll use Equations 4.4-4.14 in various ways as you work with forces and freebody
diagrams. Sometimes the force components will be known, and you will be interested in
finding the magnitude of the resultant force (so Equation 4.12 will come in handy).- Other
times, the force direction and magnitude will be known, and you will need to find the
components (using Equation 4.9). What this all means is that you need to feel
comfortable manipulating forces and their components. If you understand the principles
behind the various ways of representing a force, finding magnitudes and directions will

become straightforward with a little practice.

Summary To work with forces we need to be concerned with their magnitude and
direction. Information about magnitude and direction can be specified using magnitude
and angles (either the direction cosine angles, or the o, angles) or with scalar

components, as summarized in Table 4.2.

Sample Problem #4 Representing Planar Forces
Sample Problem #5 Representing Non-planar Forces
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