
PHOTOTRANSISTOR REFLECTIVE OBJECT SENSOR

QRB1113 QRB1114

DESCRIPTION

The QRB1113/1114 consists of an infrared emitting diode and an NPN silicon phototransistor mounted side by side on a converging optical axis in a black plastic housing. The phototransistor responds to radiation from the emitting diode only when a reflective object passes within its field of view. The area of the optimum response approximates a circle .200" in diameter.

FEATURES

- No contact surface sensing
- Phototransistor output
- Focused for sensing specular reflection

FAIRCHILD

SEMICONDUCTOR®

- Daylight filter on photosensor
- Dust cover

FAIRCHILD

SEMICONDUCTOR®

PHOTOTRANSISTOR REFLECTIVE OBJECT SENSOR

QRB1113 QRB1114

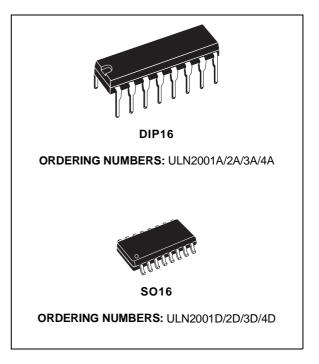
ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified)					
Parameter	Symbol	Rating	Units		
Operating Temperature	T _{OPR}	-40 to +85	°C		
Storage Temperature	T _{STG}	-40 to +85	°C		
Soldering Temperature (Iron) ^(2,3,4)	T _{SOL-I}	240 for 5 sec	°C		
Soldering Temperature (Flow) ^(2,3)	T _{SOL-F}	260 for 10 sec	°C		
EMITTER					
Continuous Forward Current	I _F	50	mA		
Reverse Voltage	V _R	5	V		
Power Dissipation ⁽¹⁾	PD	100	mW		
SENSOR					
Collector-Emitter Voltage	V _{CEO}	30	V		
Emitter-Collector Voltage	V _{ECO}	4.5	V		
Collector Current		20	mA		
Power Dissipation ⁽¹⁾	PD	100	mW		

NOTES

1. Derate power dissipation linearly 1.67 mW/°C above 25°C.

2. RMA flux is recommended.

Mich flux is recommended.
Methanol or isopropyl alcohols are recommended as cleaning agents.
Soldering iron 1/16" (1.6mm) minimum from housing.
D is the distance from the assembly face to the reflective surface.
Measured using an Eastman Kodak neutral test card with 90% diffused reflecting surface.
Cross talk is the photo current measured with current to the input diode and no reflecting surface.


ELECTRICAL/OPTICAL CHARACTERISTICS ($T_A = 25^{\circ}C$)							
Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units	
EMITTER							
Forward Voltage	I _F = 40 mA	V _F	—	—	1.7	V	
Reverse Current	V _R = 5.0 V	I _R	_		100	μA	
Peak Emission Wavelength	I _F = 20 mA	λ _{PE}		940	—	nm	
SENSOR							
Collector-Emitter Breakdown Voltage	$I_{\rm C} = 1 \rm{mA}$	BV _{CEO}	30	—	—	V	
Emitter-Collector Breakdown Voltage	I _E = 0.1 mA	BV _{ECO}	5	_	—	V	
Collector-Emitter Dark Current	V _{CE} = 10 V, I _F = 0 mA	I _{CEO}	_		100	nA	
COUPLED							
On-state Collector Current	I _F = 40 mA, V _{CE} = 5 V						
QRB1113	$D = .150^{(5,6)}$	I _{C(ON)}	0.20	—	—	mA	
QRB1114	$D = .150^{-(0,0)}$		0.60	_			
Collector-Emitter	I _F = 20 mA, I _C = 0.5 mA	Verver			0.4	V	
Saturation Voltage	F = 20 mA, 1C = 0.3 mA	V _{CE (SAT)}	_	_	0.4	v	
Rise Time	V _{CE} = 5 V, R _L = 100 V	t _r	—	8	—		
Fall Time	I _{C(ON)} = 5 mA	t _f	—	8	—	μs	
Cross Talk	$I_F = 40 \text{ mA}, V_{CE} = 5 \text{ V}^{(7)}$	I _{CX}	—	—	1.00	μA	

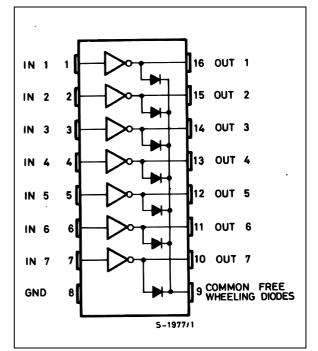
ULN2001A-ULN2002A ULN2003A-ULN2004A

SEVEN DARLINGTON ARRAYS

- SEVEN DARLINGTONS PER PACKAGE
- OUTPUT CURRENT 500mA PER DRIVER (600mA PEAK)
- OUTPUT VOLTAGE 50V
- INTEGRATED SUPPRESSION DIODES FOR INDUCTIVE LOADS
- OUTPUTS CAN BE PARALLELED FOR HIGHER CURRENT
- TTL/CMOS/PMOS/DTL COMPATIBLE INPUTS
- INPUTS PINNED OPPOSITE OUTPUTS TO SIMPLIFY LAYOUT

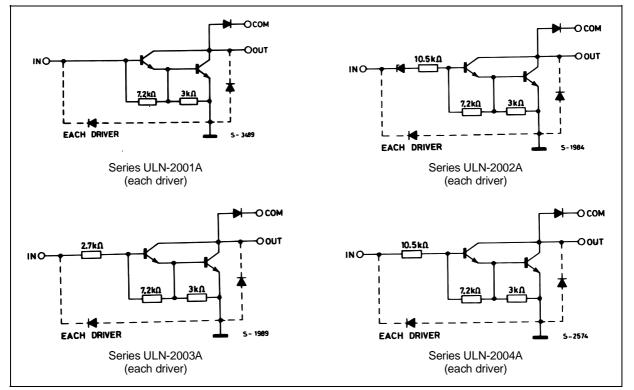
DESCRIPTION

The ULN2001A, ULN2002A, ULN2003 and ULN2004A are high voltage, high current darlington arrays each containing seven open collector darlington pairs with common emitters. Each channel rated at 500mA and can withstand peak currents of 600mA. Suppression diodes are included for inductive load driving and the inputs are pinned opposite the outputs to simplify board layout.


The four versions interface to all common logic families :

ULN2001A	General Purpose, DTL, TTL, PMOS, CMOS
ULN2002A	14-25V PMOS
ULN2003A	5V TTL, CMOS
ULN2004A	6–15V CMOS, PMOS

These versatile devices are useful for driving a wide range of loads including solenoids, relays DC motors, LED displays filament lamps, thermal printheads and high power buffers.


The ULN2001A/2002A/2003A and 2004A are supplied in 16 pin plastic DIP packages with a copper leadframe to reduce thermal resistance. They are available also in small outline package (SO-16) as ULN2001D/2002D/2003D/2004D.

PIN CONNECTION

February 2002

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vo	Output Voltage	50	V
Vin	Input Voltage (for ULN2002A/D - 2003A/D - 2004A/D)	30	V
Ιc	Continuous Collector Current	500	mA
I _b	Continuous Base Current	25	mA
T _{amb}	Operating Ambient Temperature Range	– 20 to 85	°C
T _{stg}	Storage Temperature Range	– 55 to 150	°C
Tj	Junction Temperature	150	°C

THERMAL DATA

Symbol	Parameter	DIP16	SO16	Unit
R _{th j-amb}	Thermal Resistance Junction-ambient Max.	70	120	°C/W

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit	Fig.
I _{CEX}	Output Leakage Current	$V_{CE} = 50V$ $T_{amb} = 70^{\circ}C, V_{CE} = 50V$			50 100	μΑ μΑ	1a 1a
		$ \begin{array}{l} T_{amb} = 70^{\circ} C \\ for \ ULN2002A \\ V_{CE} = 50V, \ V_i = 6V \\ for \ ULN2004A \\ V_{CE} = 50V, \ V_i = 1V \end{array} $			500 500	μA μA	1b 1b
V _{CE(sat)}	Collector-emitter Saturation Voltage	$\begin{array}{l} I_{C} = 100 \text{mA}, \ I_{B} = 250 \mu \text{A} \\ I_{C} = 200 \ \text{mA}, \ I_{B} = 350 \mu \text{A} \\ I_{C} = 350 \text{mA}, \ I_{B} = 500 \mu \text{A} \end{array}$		0.9 1.1 1.3	1.1 1.3 1.6	V V V	2 2 2
l _{i(on)}	Input Current	for ULN2002A, $V_i = 17V$ for ULN2003A, $V_i = 3.85V$ for ULN2004A, $V_i = 5V$ $V_i = 12V$		0.82 0.93 0.35 1	1.25 1.35 0.5 1.45	mA mA mA mA	3 3 3 3
I _{i(off)}	Input Current	$T_{amb} = 70^{\circ}C, I_{C} = 500\mu A$	50	65		μΑ	4
Vi(on)	Input Voltage	$\begin{array}{l} V_{CE} = 2V \\ \text{for ULN2002A} \\ I_{C} = 300\text{mA} \\ \text{for ULN2003A} \\ I_{C} = 200\text{mA} \\ I_{C} = 250\text{mA} \\ I_{C} = 300\text{mA} \\ \text{for ULN2004A} \\ I_{C} = 125\text{mA} \\ I_{C} = 200\text{mA} \\ I_{C} = 275\text{mA} \\ I_{C} = 350\text{mA} \\ \end{array}$			13 2.4 2.7 3 5 6 7 8	V	5
h _{FE}	DC Forward Current Gain	for ULN2001A $V_{CE} = 2V$, $I_C = 350$ mA	1000				2
Ci	Input Capacitance			15	25	pF	
t _{PLH}	Turn-on Delay Time	0.5 V_i to 0.5 V_o		0.25	1	μs	
t _{PHL}	Turn-off Delay Time	0.5 V_{i} to 0.5 V_{o}		0.25	1	μs	
I _R	Clamp Diode Leakage Current	$V_R = 50V$ $T_{amb} = 70^{\circ}C, V_R = 50V$			50 100	μΑ μΑ	6 6
V _F	Clamp Diode Forward Voltage	I _F = 350mA		1.7	2	V	7

ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$ unless otherwise specified)

DMOS Full-Bridge Motor Driver

Features and Benefits

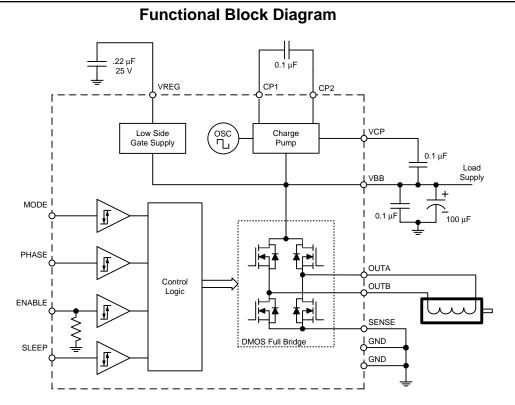
- Single supply operation
- Very small outline package
- Low R_{DS(ON)} outputs
- Sleep function
- Internal UVLO
- Crossover current protection
- Thermal shutdown protection

Packages:

Not to scale

Package LB, 16-pin SOIC with internally fused pins

Package LP, 16-pin TSSOP with exposed thermal pad


Description

Designed for PWM (pulse width modulated) control of dc motors, the A3949 is capable of peak output currents to ± 2.8 A and operating voltages to 36 V.

PHASE and ENABLE input terminals are provided for use in controlling the speed and direction of a dc motor with externally applied PWM control signals. Internal synchronous rectification control circuitry is provided to reduce power dissipation during PWM operation.

Internal circuit protection includes thermal shutdown with hysteresis, undervoltage monitoring of $V_{_{BB}}$ and $V_{_{CP}}$, and crossover current protection.

The A3949 is supplied in a choice of two power packages, a 16-pin plastic SOIC with a copper batwing tab (part number suffix *LB*), and a low profile (1.1mm) 16-pin TSSOP (suffix *LP*) with exposed power tab. Both packages are lead (Pb) free, with 100% matte tin leadframes.

DMOS Full-Bridge Motor Driver

Selection Guide

Part Number	Package	Packing
A3949SLB-T	16-pin, SOIC	47 per tube
A3949SLBTR-T	16-pin, SOIC	1000 per reel
A3949SLP-T	16-pin, TSSOP	96 per tube
A3949SLPTR-T	16-pin, TSSOP	4000 per reel

Absolute Maximum Ratings

Characteristic	Symbol	Notes	Rating	Units
Lood Supply Voltage	V		36	V
Load Supply Voltage	V _{BB}	Peak < 2 µs	38	V
Logic Input Voltage	V _{IN}		–0.3 to 7	V
Sense Voltage	V		0.5	V
Output Current, Repetitive	I _{OUT}	Output current rating may be limited by duty cycle, ambient temperature, and heat sinking. Under any set of conditions, DO NOT exceed the specified I_{OUT} or T_{J} .	±2.8	A
Operating Ambient Temperature	T _A	Range S	–20 to 85	°C
Maximum Junction Temperature	T _J (max)		150	°C
Storage Temperature	T _{stg}		–55 to 150	°C

Package Thermal Characteristics*

Characteristic	Symbol	Note	Rating	Units
Deckage Thermal Decistence	P	LB package, measured on 2-layer PCB with 2 in ² 2-oz. copper each side	52	°C/W
Package Thermal Resistance		LP package, measured on 4-layer PCB based on JEDEC standard	34	°C/W

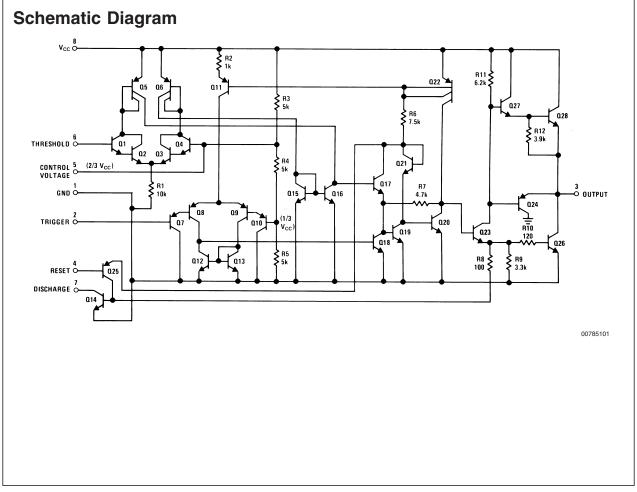
*Additional information is available on the Allegro website

DMOS Full-Bridge Motor Driver

ELECTRICAL CHARACTERISTICS at $T_A = 25^{\circ}C$, $V_{BB} = 8 V$ to 36 V (unless otherwise noted)

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
		Source driver, $I_{OUT} = -2.8 \text{ A}, T_{J} = 25^{\circ}\text{C}$	-	.4	.48	Ω
	-	Source driver, $I_{OUT} = -2.8 \text{ A}$, $T_{J} = 125^{\circ}\text{C}$	_	.68	-	Ω
Output-On Resistance	R_{DSON}	Sink driver, $I_{OUT} = 2.8 \text{ A}, T_J = 25^{\circ}\text{C}$	_	.3	.43	Ω
		Sink driver, $I_{OUT} = -2.8 \text{ A}, T_J = 125^{\circ}\text{C}$	-	.576	-	Ω
Dadu Diada Farmad Maltara		Source diode, $I_F = -2.8 \text{ A}$	_	1.1	1.3	V
Body Diode Forward Voltage	V_{F}	Sink diode, I _F = 2.8 A	-	1	1.3	V
		f _{PWM} < 50 kHz	-	6	8.5	mA
Motor Supply Current	I _{BB}	Charge pump turned on; outputs disabled	-	3	4.5	mA
		Sleep mode	_	_	10	μA
Logic Input Voltage	V _{IN(1)}		2.0	_	_	V
PHASE, ENABLE, MODE	V _{IN(0)}		_	_	0.8	V
Logic Input Voltage	V _{IN(1)}		2.7	_	_	V
SLEEP	V _{IN(0)}		_	_	0.8	V
Logic Input Current	I _{IN(1)}	V _{IN} = 2.0 V	-	< 1.0	20	μA
PHASE, MODE pins	I _{IN(0)}	V _{IN} = 0.8 V	-	< -2.0	-20	μA
Logic Input Current	I _{IN(1)}	V _{IN} = 2.0 V	-	40	100	μA
ENABLE pin	I _{IN(0)}	V _{IN} = 0.8 V	_	16	40	μA
Logic Input Current	l _{IN(1)}	V _{IN} = 2.7 V	-	27	50	μA
SLEEP pin	Ι _{IN(0)}	V _{IN} = 0.8 V	-	< 1	10	μA
		From PWM change to source or sink turn on	-	600	-	ns
Propagation Delay Times	t _{pd}	From PWM change to source or sink turn off	-	100	-	ns
Crossover Delay	t _{cod}		_	500	-	ns
Protection Circuitry						
UVLO Enable Threshold		VBB rising	_	6	_	V
UVLO Hysteresis			_	250	_	mV
Thermal Shutdown Temp.	TJ		_	170	_	°C
Thermal Shutdown Hysteresis	ΔT_{J}		_	15	-	°C

LM555 Timer General Description

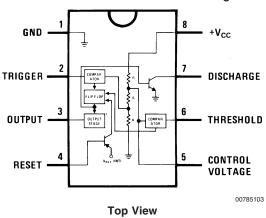

The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to 200mA or drive TTL circuits.

Features

- Direct replacement for SE555/NE555
- Timing from microseconds through hours
- Operates in both astable and monostable modes
- Adjustable duty cycle
- Output can source or sink 200 mA
- Output and supply TTL compatible
- Temperature stability better than 0.005% per °C
- Normally on and normally off output
- Available in 8-pin MSOP package

Applications

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulation
- Linear ramp generator



July 2006

LM555

Connection Diagram

Dual-In-Line, Small Outline and Molded Mini Small Outline Packages

Ordering Information

Package	Part Number	Package Marking	Media Transport	NSC Drawing	
8-Pin SOIC	LM555CM	LM555CM	Rails	M08A	
	LM555CMX	LM555CM	2.5k Units Tape and Reel	IVIUOA	
8-Pin MSOP	LM555CMM	Z55	1k Units Tape and Reel	NALLA OD A	
	LM555CMMX	Z55	3.5k Units Tape and Reel	MUA08A	
8-Pin MDIP	LM555CN	LM555CN	Rails	N08E	

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	+18V
Power Dissipation (Note 3)	
LM555CM, LM555CN	1180 mW
LM555CMM	613 mW
Operating Temperature Ranges	
LM555C	0°C to +70°C
Storage Temperature Range	–65°C to +150°C

Soldering Information	
Dual-In-Line Package	
Soldering (10 Seconds)	260°C
Small Outline Packages	
(SOIC and MSOP)	
Vapor Phase (60 Seconds)	215°C
Infrared (15 Seconds)	220°C
See AN-450 "Surface Mounting Methods and Their	Effect

on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics (Notes 1, 2)

 $(T_A = 25^{\circ}C, V_{CC} = +5V \text{ to } +15V, \text{ unless othewise specified})$

Parameter	Conditions		Limits			
			LM555C]		
		Min	Тур	Max]	
Supply Voltage		4.5		16	V	
Supply Current	$V_{\rm CC} = 5V, R_{\rm L} = \infty$		3	6		
	$V_{CC} = 15V, R_{L} = \infty$		10	15	mA	
	(Low State) (Note 4)					
Timing Error, Monostable						
Initial Accuracy			1		%	
Drift with Temperature	$R_A = 1k \text{ to } 100k\Omega,$		50		ppm/°C	
	$C = 0.1 \mu F$, (Note 5)					
Accuracy over Temperature			1.5		%	
Drift with Supply			0.1		%/V	
Timing Error, Astable						
Initial Accuracy			2.25		%	
Drift with Temperature	R_A , $R_B = 1k$ to $100k\Omega$,		150		ppm/°C	
	C = 0.1µF, (Note 5)					
Accuracy over Temperature			3.0		%	
Drift with Supply			0.30		%/V	
Threshold Voltage			0.667		x V _{cc}	
Trigger Voltage	$V_{\rm CC} = 15V$		5		V	
	$V_{\rm CC} = 5V$		1.67		V	
Trigger Current			0.5	0.9	μA	
Reset Voltage		0.4	0.5	1	V	
Reset Current			0.1	0.4	mA	
Threshold Current	(Note 6)		0.1	0.25	μA	
Control Voltage Level	$V_{\rm CC} = 15V$	$V_{CC} = 15V$ 9 10 $V_{CC} = 5V$ 2.6 3.33		11	v	
	$V_{\rm CC} = 5V$			4	v v	
Pin 7 Leakage Output High			1	100	nA	
Pin 7 Sat (Note 7)						
Output Low	$V_{CC} = 15V, I_7 = 15mA$		180		mV	
Output Low	$V_{\rm CC} = 4.5 V, I_7 = 4.5 mA$		80	200	mV	

LM555

Electrical Characteristics (Notes 1, 2) (Continued)

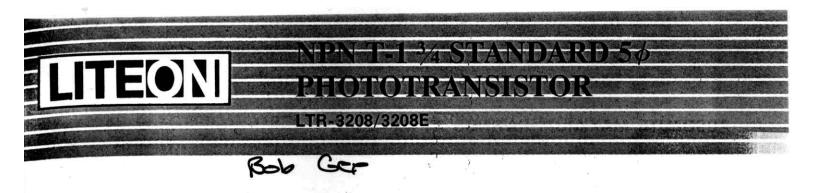
 $(T_A = 25^{\circ}C, V_{CC} = +5V \text{ to } +15V, \text{ unless othewise specified})$

Parameter	Conditions			Units	
			1		
		Min	Тур	Мах	
Output Voltage Drop (Low)	V _{CC} = 15V				
	I _{SINK} = 10mA		0.1	0.25	V
	I _{SINK} = 50mA		0.4	0.75	V
	I _{SINK} = 100mA		2	2.5	V
	I _{SINK} = 200mA		2.5		V
	$V_{CC} = 5V$				
	I _{SINK} = 8mA				V
	I _{SINK} = 5mA		0.25	0.35	V
Output Voltage Drop (High)	$I_{SOURCE} = 200 \text{mA}, V_{CC} = 15 \text{V}$		12.5		V
	$I_{SOURCE} = 100 \text{mA}, V_{CC} = 15 \text{V}$	12.75	13.3		V
	$V_{CC} = 5V$	V _{CC} = 5V 2.75			V
Rise Time of Output			100		ns
Fall Time of Output			100		ns

Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: For operating at elevated temperatures the device must be derated above 25°C based on a +150°C maximum junction temperature and a thermal resistance of 106°C/W (DIP), 170°C/W (S0-8), and 204°C/W (MSOP) junction to ambient.


Note 4: Supply current when output high typically 1 mA less at V_{CC} = 5V.

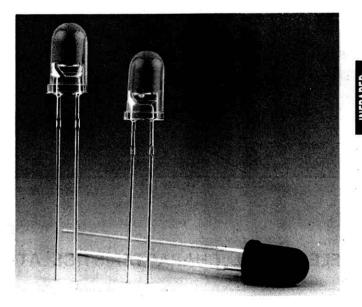
Note 5: Tested at V_{CC} = 5V and V_{CC} = 15V.

Note 6: This will determine the maximum value of $R_A + R_B$ for 15V operation. The maximum total ($R_A + R_B$) is 20M Ω .

Note 7: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded.

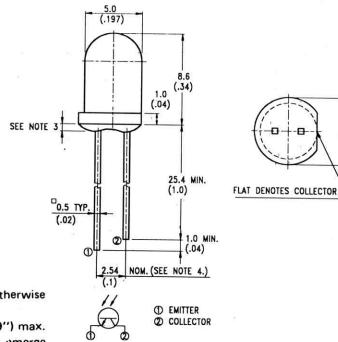
Note 8: Refer to RETS555X drawing of military LM555H and LM555J versions for specifications.

FEATURES


• WIDE RANGE OF COLLECTOR CURRENTS. • LENSED FOR HIGH SENSITIVITY.

. LOW COST PLASTIC PACKAGE.

DESCRIPTION


The LTR-3208 series consist of a NPN silicon phototransistor mounted in a lensed, clear plastic, end looking package. The lensing effect of the package allows an acceptance half angle of 10° measured from the optical axis to the half power point. This series is mechanically and spectrally matched to the LTE-4208 series of infrared emitting diodes.

The LTR-3208E is a special dark plastic package that cut the visible light and suitable for the detectors of infrared applications.

(.22)

PACKAGE DIMENSIONS

- 1. All dimensions are in millimeters (inches).
- Tolerance is ±0.25mm (.010") unless otherwise noted.
- 3. Protruded resin under flange is 1.5mm (.059") max.
- 4. Lead spacing is measured where the leads emerge from the package.
- 5. Specifications are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS AT TA = 25 $^{\circ}$ C

PARAMETER	MAXIMUM RATING	UNIT			
Power Dissipation	100	mW			
Collector-Emitter Voltage	30	V			
Emitter-Collector Voltage	5	V			
Operating Temperature Range	—55 °C to + 100.°C				
Storage Temperature Range	—55 °C to + 100 °C				
Lead Soldering Temperature [1.6mm (0.063in) From Body]	260 °C for 5.Seconds				

3

ELECTRICAL CHARACTERISTICS AT TA = 25 °C

PARAMETER	SYMBOL	PART NO LTR—	MIN	ТҮР	МАХ	UNIT	TEST CONDITION	
Collector-Emitter Breakdown Voltage	V (BR) CEO		30			V	lc=1 mA Ee=0 mW/cm ²	
Emitter-Collector Breakdown Voltage	V (BR) ECO		5			V	$I_E = 100 \ \mu A$ $E e = 0 \ mW/cm^2$	
Collector Emitter Saturation Voltage	V CE (SAT)				0.4	V	lc=0.5 mA Ee=0.5 mW/cm²	
Rise Time	Τr			10		μS	Vcc = 30 V	
Fall Time	Τf			5		μS	lc=800 μA RL=1 kΩ	
Collector Dark Current	I CEO	1	=		100	nA	$V_{CE} = 10 V$ E e = 0 mW/cm ²	
On State Collector Current	I c (ON)	3208	1	4		mA	$V_{CE} = 5 V$ E e = 1 mW/cm ² $\lambda = 940 \text{ nm}$	
	TC (ON)	3208E	1	2		mA		