Electromechanical actuators

Cyrus Bazeghi Winter 2010

Solenoids and DC Motors

• What they are

- How they work
- Snubbing
- Why you have to

Solenoids Chempt simple

Solenoid Characteristics

Design and Stroke vs. Force

	Тур	bical S	Solen	oid S	Spec.	′S _		
+	duty cycle maximum "ON	l" time, (Sec.)	1	1/2 25	1/4 6	1/10 0.5		
	watts approximate a	impere turns	2 205	4 290	8 410	20 650		
	AWG number	resistance	volts DC	volts DC	volts DC	volts DC		
, 1 (27	0.39	0.9	1.3	1.8	2.8		
	28	0.52	1.1	1.5	2.1	3.4		
	29	0.69	1.2	1.7	2.5	3.9		
1-1	5 2 ³⁰	1.43	1.6	2.3	3.3	5.2		
	5 2 ³¹	1.93	2.0	2.9	4.1	6.4		
	32	3.20	2.5	3.6	5.0	8.0		
	33	5.28	3.3	4.6	6.6	10.4		
	34	7.43	3.9	5.5	7.8	12.4		
	35	12.1	4.8	6.7	9.5	15.1		
	36	20.8	6.2	8.8	12.4	19.6		
	37	30.3	7.7	10.8	15.3	24.3		
	38	47.8	9.5	13.4	19.0	30.1		
BETTY OF C	39	88.9	13.0	18.4	26.0	41.3		
	40	127	15.8	22.4	31.7	50.2		
	41	183	19.2	27.2	38.5	61.0		
FOR	42	281	24.0	33.9	47.9	76.0		

DC Motors

Motors in Cars

Fig. 1.1 Small motors in an automobile.

The Permanent Magnet DC Motor

Fig. 1.1. A cutaway view of a DC motor.

Commutation

Fig. 3.37 Arrangement of coil, commutator segments, and brushes in a DC motor: (a) exploded diagram of lap winding; (b) coil connections.

CMPE 118 - Intro. to Mechatronics

Unit conversions

CMPE 118 - Intro. to Mechatronics

CMPE 118 - Intro. to Mechatronics

DC Motor Graphs

U₃ = 36 Volt

CMPE 118 – Intro. to Mechatronics

DC Motor Spec.'s

	DC fare	MO	to	rS	Sp	ec	<u>'S</u>				
	pro 1				_	\frown					1
	Wind	ling number	930	933	934	948	936	944	937	938	945
Mo	otor Data										
1	Assigned power rating	W	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0
2	Nominal voltage	Volt	3.0	7.2	9.0	12.0	12.0	12.0	15.0	18.0	18.0
- 3	No load speed	rpm	5080	9270	9460	10700	8110	7770	8460	8240	8010
4	Stall torque	mNm	20.9	42.5	45.7	51.7	42.7	35.1	44.4	43.0	38.0
5	Speed/torque gradient	rpm/mNm	260	225	213	211	194	227	194	195	215
6	No load current	mA	114	101	83	73	50	47	42	34	33
->7	Starting current T STALL	mA	3960	5910	5160	(4920)	3090	2440	2680	2100	1810
8	Terminal resistance	Ohm	0.757	1.22	1.74	2.44	3.88	4.92	5.60	8.56	9.96
9	Max. permissible speed	rpm	11000	11000	11000	11000	11000	11000	11000	11000	11000
10	Max. continuous current	mA	1500	1500	1440	1220	972	865	809	656	609
11	Max. continuous torque	mNm	7.92	10.8	12.7	12.8	13.4	12.4	13.4	13.4	12.8
12	Max. power output at nominal voltage	mW	2460	9620	10800	13900	8770	6920	9590	9070	7780
13	Max. efficiency	%	64	73	75	76	75	74	76	76	75
14	Torque constant	mNm/A	5.28	7.19	8.85	10.5	13.8	14.4	16.6	20.5	21.0
15	Speed constant	rpm/V	1810	1330	1080	909	691	664	576	467	455
16	Mechanical time constant	ms	29	22	20	19	18	18	18	18	18
17	Rotor inertia	gcm ²	10.8	9.23	9.07	8.68	9.07	7.76	8.84	8.63	7.87
18	Terminal inductance	mH	0.07	0.12	0.18	0.26	0.45	0.48	0.64	0.98	1.03
19	Thermal resistance housing-ambient	K/W	17	17	17	17	17	17	17	17	17
20	Thermal resistance rotor-housing		2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
21	Thermal time constant winding	S	7	6	6	6	6	5	6	6	5

Operating Ranges

Speed (n), torque (M), current (I): The outer edges of the values depicted represent limits for continuous and short term motor operation. Values listed in the tables (lines 3, 4, 6, 7, 12 and 13) are valid for operation at nominal voltage (line 2). These are therefore values which are only reached when operating the motor at higher voltages Assigned Power Rating P_{2T} (W) (Line 1)
 Starting current I_A at nominal voltage (Line 7) as well as related stall torque

 $M_{\rm H}$ (mNm) (Line 4) $I_{\rm A} = \frac{U}{R} \cdot 10^3$ (mA)

Winding number with the related current curve at the appropriate torque.

Defining "Short Term Operation"

An example problem (1.2)

- You have been assigned to follow up on the design of a former employee who had not taken CMPE-118.
- Your supervisor suspects that they didn't know what they were doing.
- The only documentation that you can find
- Shows that the motor chosen has Kt = 9.33 in.-oz./A and produces 2.8 in.-oz. at stall when driven at 12V.
 - The design requires that the motor deliver 0.4 in.-oz. at 1500 rpm.
 - The motor was supposed to be driven from a <u>12V supply</u> and switched by a ULN2003. Your boss has asked you:

An example problem (2.2)

- 1. How can I find out how much current the motor will draw at stall? Istal = JounA
- 2. Can the ULN2003 safely switch the required current? allows 325mA if my idence used
- 3. How can I find the NL Speed? $\omega_{NL} = 1739$
- 4. How can I find the coil resistance ? Yor
- 5. How can I find the torque at a given speed ?
- 6. Will the design meet the requirements for torque & speed? If not, what changes could you suggest? $V \sim V \sim V$ suggest?
- 7. To estimate the current required when running at the design point.
- 8.(You may assume that there are no internal losses) within the motor

ULN2003A Specifications (2.2)

Motor Design Solution (1.3)
I)
$$I_{3TAW} = ??$$

 $T = k_T I$
 $F_{T} = k_T I$
 $F_{Traw} = \frac{13}{K_T} = \frac{2.8 \text{ in-x}}{9.33 \text{ in-or}}$
 $\overline{K_T} = 0.4 \text{ in-oz.}$
 $\omega_{req} = 1500 \text{ rpm.}$
 $K_T = 1.3524K_E [oz-in/A; V/krpm]$
Wes, burely 32.5 mA is during on t only lbn
 $K_T = 1.3524K_E [oz-in/A; V/krpm]$
When $K_E = \frac{12}{9.33} \text{ in-or}$
 $M = \frac{12}{1.3524} \text{ ke} = \frac{12}{9.33} \text{ in-or}$
 $K_T = 1.3524K_E [oz-in/A; V/krpm]$

CMPE 118 - Intro. to Mechatronics

Motor Design Solution (3.3) 6) O.Y. mar Q 1500 rpm $K_t = 9.33$ in.-oz./A **411.** $T_{stall} = 2.8 \text{ in.-oz.}$ - 2.749- 1.607×1.5 $V_{stall} = 12V.$ $T_{reg} = 0.4$ in.-oz. = 0.3885 $\omega_{reg} = 1500$ rpm. $K_{T} = 1.3524 K_{F} [oz-in/A; V/krpm]$ T= 0.202 02-in 0/1.20 -.80 Jupy don't meet 1=K-K-K-K-W Har + Fix? Runa voltage +176

CMPE 118 – Intro. to Mechatronics

WHow to Change Directions +15 45 50

CMPE 118 – Intro. to Mechatronics

Pulse Width Modulation

CMPE 118 - Intro. to Mechatronics

CMPE 118 - Intro. to Mechatronics

CMPE 118 - Intro. to Mechatronics

Collector Voltage

CMPE 118 – Intro. to Mechatronics

Snubbing: Diode Snubber

Inductor Current w/Diode Snubber

CMPE 118 - Intro. to Mechatronics

Collector Voltage w/Diode Snubber

CMPE 118 - Intro. to Mechatronics

Where to put the diodes?

Snubbing: Diode + Zener 1) Divbe + pour resistor 12\ of ⊊1.2mHੈ Z 3 ∲11.4 0/0V XN3055 50 File Ext

Inductor Current w/ Diode + Zener Inductor Current with Diode + Zener Snubber > Main 42.5m -141m To with در مریم Current -325m -509m -693n -877m -1.06₀ 167u 333u 500u 667u 833u 1m Ref=Ground X=167uS/Div

CMPE 118 - Intro. to Mechatronics

Collector Voltage w/ Diode + Zener

Collector Voltage with Diode + Zener Snubber

Snubbing: Zener only

Inductor Current w/ Zener Only

Inductor Current with Zener Only Snubber

Collector Voltage w/ Zener Only

CMPE 118 – Intro. to Mechatronics

Where to put the Zeners?

Snubbers Compared

Inductor Current Decay Comparison

CMPE 118 - Intro. to Mechatronics

Brushless DC Motors

Brushless DC: Commutation

CMPE 118 - Intro. to Mechatronics

Hall Sensor Based Commutation

CMPE 118 - Intro. to Mechatronics

Questions?

